图论一直是小C的弱项,相比其它题型,图论的花样通常会更多一点,套路也更难捉摸。

Description

  给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000)。给你两个顶点S和T,求一条路径,使得路径上最大边和最小边的比值最小。如果S和T之间没有路径,输出”IMPOSSIBLE”,否则输出这个比值,如果需要,表示成一个既约分数。 备注: 两个顶点之间可能有多条路径。

Input

  第一行包含两个正整数,N和M。下来的M行每行包含三个正整数:x,y和v。表示景点x到景点y之间有一条双向公路,车辆必须以速度v在该公路上行驶。最后一行包含两个正整数s,t,表示想知道从景点s到景点t最大最小速度比最小的路径。s和t不可能相同。

Output

  如果景点s到景点t没有路径,输出“IMPOSSIBLE”。否则输出一个数,表示最小的速度比。如果需要,输出一个既约分数。

Sample Input

  3 3
  1 2 10
  1 2 5
  2 3 8
  1 3

Sample Output

  5/4

HINT

  1<N<=500,1<=x,y<=N,0<v<30000,0<M<=5000

Solution

  看到最大和最小值我们就可以感觉到肯定不能直接走,然后很自然地想到了排序。

  这种图论的题型常常要求我们逆向思考,我们不是找一条路径去更新答案,而是枚举一个答案看它能否构成路径。

  于是我们枚举路径中的最小的那条边,从小到大加边,直到S和T连通,

  说明存在一条S到T的路径。用最后加入的这条边和枚举的最小边更新答案。

  判连通性用并查集即可。

  时间复杂度O(m^2)

  在黄学长博客里还看到一个比较妙的解法分享一下:

    

  理论复杂度是一样的,但实际远小于上界。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define MN 505
#define MM 5005
#define INF 0x3FFFFFFF
using namespace std;
struct edge{int x,y,z;}b[MM];
int fa[MN];
int n,m,S,T,ans1,ans2,g; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} int getf(int x) {return fa[x]?fa[x]=getf(fa[x]):x;}
inline void gather(int x,int y) {if (x!=y) fa[x]=y;}
int gcd(int x,int y) {return y?gcd(y,x%y):x;}
bool cmp(const edge& a,const edge& b) {return a.z<b.z;} int main()
{
register int i,j;
n=read(); m=read();
for (i=;i<=m;++i)
b[i].x=read(),b[i].y=read(),b[i].z=read();
S=read(); T=read();
sort(b+,b+m+,cmp);
ans1=INF; ans2=;
for (i=;i<=m;++i)
{
memset(fa,,sizeof(fa));
for (j=i;j<=m;++j)
{
gather(getf(b[j].x),getf(b[j].y));
if (getf(S)==getf(T)) break;
}
if (j>m) break;
if ((double)b[j].z/b[i].z<(double)ans1/ans2) ans1=b[j].z,ans2=b[i].z;
}
if (i==) return *printf("IMPOSSIBLE");
g=gcd(ans1,ans2);
ans1/=g; ans2/=g;
if (ans2==) printf("%d",ans1); else printf("%d/%d",ans1,ans2);
}

Last Word

  用并查集解决图论的问题也是常见的思路。

  小C会告诉你迷之RE是因为并查集写错了?

[BZOJ]1050 旅行comf(HAOI2006)的更多相关文章

  1. BZOJ 1050 旅行comf(枚举最小边-并查集)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1050 题意:给出一个带权图.求一条s到t的路径使得这条路径上最大最小边的比值最小? 思路 ...

  2. BZOJ 1050 旅行comf 并查集+枚举下界

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1050 题目大意: 给你一个无向图,N(N<=500)个顶点, M(M<=5 ...

  3. BZOJ 1050 旅行comf

    题目如下: 题目描述 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点S和T,求一条路径,使得路径上最大边 ...

  4. HYSBZ - 1050(旅行comf 并查集Java实现)

    HYSBZ - 1050(旅行comf Java实现) 原题地址 解法:枚举每一条边,对于这条边,我们需要找到集合中和其值相差最小的最大边,这个集合是指与包括i边在内的ST联通集.对于这一要求,我们只 ...

  5. BZOJ 1050 旅行

    Description 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点S和T,求一条路径,使得路径上最大 ...

  6. BZOJ 1050 旅行(并查集)

    很好的一道题.. 首先把边权排序.然后枚举最小的边,再依次添加不小于该边的边,直到s和t联通.用并查集维护即可. # include <cstdio> # include <cstr ...

  7. 【BZOJ】【1050】【HAOI2006】旅行comf

    枚举/暴力/Kruskal orz……我sb了……其实是sb题<_< 有一道题问的是最小极差生成树……(不记得是什么名字了,就是求最大边权与最小边权差最小的生成树)做法是枚举最小边,然后k ...

  8. BZOJ 1050 [HAOI2006]旅行comf

    1050: [HAOI2006]旅行comf Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1889  Solved: 976[Submit][Sta ...

  9. BZOJ 1050: [HAOI2006]旅行comf( 并查集 )

    将edge按权值排序 , O( m² ) 枚举边 , 利用并查集维护连通信息. ------------------------------------------------------------ ...

随机推荐

  1. DOM相关知识

    一.查找元素 间接查找 parentNode // 父节点 childNodes // 所有子节点 firstChild // 第一个子节点 lastChild // 最后一个子节点 nextSibl ...

  2. 怎么去理解JAVA中类与对象的关系

    首先要明确,在现实生活中,每一个物体都有自己的基本特征,专业一点也可以说成是属性有些甚至还有一定的行为.例如 汽车的特征:有车门.有轮胎.颜色各一等等,行为:有行驶,开车门,开车灯,等等.有这些属性和 ...

  3. 《高级软件测试》11.14.安装和运行Jira

    今日任务完成情况如下: 小段:研究Jira在Linux的安装教程 小费:尝试在Ubuntu下安装Jira 小高:查阅了关于Jira软件的介绍和安装教程,下载准备明天安装,并学习使用 小王:注册Jira ...

  4. Project facet is Java version 1.7 is not spported

    在移植eclipse项目时,如果遇到 "Project facet Java version 1.7 is not supported." 项目中的jdk1.7不支持.说明项目是其 ...

  5. 在wamp集成环境下安装laravel5.2.*框架

    虽然官方一直强烈推荐使用homestead,但是这个相对麻烦一点,所以我还是选择使用wamp集成开发环境.还有这里我只讲解windows系统下的安装,其他例如mac或linux就不写了,此文章是面向刚 ...

  6. php的api及登录的权限验证

    类,库,接口(APi),函数,这些概念都是根据问题规模的大小来界定的.一个很小的问题肯定没有必要写成一个库,只需要写几句话就行了. 但是比如一个登录验证,这个功能很强大,很通用,可能前台后台都需要用到 ...

  7. JavaScript正则表达式学习笔记(二) - 打怪升级

    本文接上篇,基础部分相对薄弱的同学请移步<JavaScript正则表达式学习笔记(一) - 理论基础>.上文介绍了8种JavaScript正则表达式的属性,本文还会追加介绍几种JavaSc ...

  8. linux下的Shell编程(8)自定义函数

    Shell Script中也可以使用自定义的函数,其语法形式如下: functionname() { - }

  9. java线程池01-ThreadPoolExecutor构造方法参数的使用规则

    为了更好的使用多线程,JDK提供了线程池供开发人员使用,目的在于减少线程的创建和销毁次数,以此达到线程的重复利用. 其中ThreadPoolExecutor是线程池中最核心的一个类,我们先简单看一下这 ...

  10. DOM常用外部插入方法与区别

    1.DOM外部插入after()与before() 节点与节点之前有各种关系,除了父子,祖辈关系,还可以是兄弟关系.之前我们在处理节点插入的时候,接触到了内部插入的几个方法,这节我们开始讲外部插入的处 ...