链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3669

题面:

3669: [Noi2014]魔法森林

Time Limit: 30 Sec  Memory Limit: 512 MB
Submit: 3928  Solved: 2524
[Submit][Status][Discuss]

Description

为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士。魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M。初始时小E同学在号节点1,隐士则住在号节点N。小E需要通过这一片魔法森林,才能够拜访到隐士。

魔法森林中居住了一些妖怪。每当有人经过一条边的时候,这条边上的妖怪就会对其发起攻击。幸运的是,在号节点住着两种守护精灵:A型守护精灵与B型守护精灵。小E可以借助它们的力量,达到自己的目的。

只要小E带上足够多的守护精灵,妖怪们就不会发起攻击了。具体来说,无向图中的每一条边Ei包含两个权值Ai与Bi。若身上携带的A型守护精灵个数不少于Ai,且B型守护精灵个数不少于Bi,这条边上的妖怪就不会对通过这条边的人发起攻击。当且仅当通过这片魔法森林的过程中没有任意一条边的妖怪向小E发起攻击,他才能成功找到隐士。

由于携带守护精灵是一件非常麻烦的事,小E想要知道,要能够成功拜访到隐士,最少需要携带守护精灵的总个数。守护精灵的总个数为A型守护精灵的个数与B型守护精灵的个数之和。

Input

第1行包含两个整数N,M,表示无向图共有N个节点,M条边。 接下来M行,第行包含4个正整数Xi,Yi,Ai,Bi,描述第i条无向边。其中Xi与Yi为该边两个端点的标号,Ai与Bi的含义如题所述。 注意数据中可能包含重边与自环。

Output

输出一行一个整数:如果小E可以成功拜访到隐士,输出小E最少需要携带的守护精灵的总个数;如果无论如何小E都无法拜访到隐士,输出“-1”(不含引号)。

Sample Input

【输入样例1】
4 5
1 2 19 1
2 3 8 12
2 4 12 15
1 3 17 8
3 4 1 17

【输入样例2】

3 1
1 2 1 1

Sample Output

【输出样例1】

32
【样例说明1】
如果小E走路径1→2→4,需要携带19+15=34个守护精灵;
如果小E走路径1→3→4,需要携带17+17=34个守护精灵;
如果小E走路径1→2→3→4,需要携带19+17=36个守护精灵;
如果小E走路径1→3→2→4,需要携带17+15=32个守护精灵。
综上所述,小E最少需要携带32个守护精灵。

【输出样例2】

-1
【样例说明2】
小E无法从1号节点到达3号节点,故输出-1。

 
 
思路:
首先要求从1到n路径上属性a,b加起来最小的最大值,我们可以将属性a从小到大排序,根据属性b建立最小生成树,如果当前两点u,v联通,那么比较当前边的b值和之前的b值谁更小,如果当前边是更优的选择的话,就把之前的边断掉连上当前的边,然后更新下从1-n的最大值,维护最小的。
 
LCT边权的写法和树链剖分是不一样的,我们可以建一个新点分别连接u,v,这个点的权值就是这条边的权值,查找两点路径的边权最大值时就转化比较路径上所有点的最大值,然后就可以用上面的写法维护。
 
实现代码;
#include<bits/stdc++.h>
using namespace std;
const int M = 3e5+;
const int inf = 0x3f3f3f3f;
int n,m,sz,rt,c[M][],fa[M],val[M],mx[M],st[M],top;
bool rev[M]; inline void up(int x){
int l = c[x][],r = c[x][];
mx[x] = x;
if(l&&val[mx[l]]>val[mx[x]]) mx[x] = mx[l];
if(r&&val[mx[r]]>val[mx[x]]) mx[x] = mx[r];
} inline void pushrev(int x){
int t = c[x][];
c[x][] = c[x][]; c[x][] = t;
rev[x] ^= ;
} inline void pushdown(int x){
if(rev[x]){
int l = c[x][],r = c[x][];
if(l) pushrev(l);
if(r) pushrev(r);
rev[x] = ;
}
} inline bool nroot(int x){ //判断一个点是否为一个splay的根
return c[fa[x]][]==x||c[fa[x]][] == x;
} inline void rotate(int x){
int y = fa[x],z = fa[y],k = c[y][] == x;
int w = c[x][!k];
if(nroot(y)) c[z][c[z][]==y]=x;
c[x][!k] = y; c[y][k] = w;
if(w) fa[w] = y; fa[y] = x; fa[x] = z;
up(y);
} inline void splay(int x){
int y = x,z = ;
st[++z] = y;
while(nroot(y)) st[++z] = y = fa[y];
while(z) pushdown(st[z--]);
while(nroot(x)){
y = fa[x];z = fa[y];
if(nroot(y))
rotate((c[y][]==x)^(c[z][]==y)?x:y);
rotate(x);
}
up(x);
} //打通根节点到指定节点的实链,使得一条中序遍历从根开始以指定点结束的splay出现
inline void access(int x){
for(int y = ;x;y = x,x = fa[x])
splay(x),c[x][]=y,up(x);
} inline void makeroot(int x){ //换根,让指定点成为原树的根
access(x); splay(x); pushrev(x);
} inline int findroot(int x){ //寻找x所在原树的树根
access(x); splay(x);
while(c[x][]) pushdown(x),x = c[x][];
splay(x);
return x;
} inline void split(int x,int y){ //拉出x-y的路径成为一个splay
makeroot(x); access(y); splay(y);
} inline void cut(int x,int y){ //断开边
makeroot(x);
if(findroot(y) == x&&fa[y] == x&&!c[y][]){
fa[y] = c[x][] = ;
up(x);
}
} inline void link(int x,int y){ //连接边
makeroot(x);
if(findroot(y)!=x) fa[x] = y;
} inline int query(int u,int v){
split(u,v);
return mx[v];
} struct node{
int u,v,x,y;
}e[M]; bool cmp(node a,node b){
if(a.x == b.x) return a.y < b.y;
return a.x < b.x;
} int main()
{
scanf("%d%d",&n,&m);
for(int i = ;i <= m;i ++)
scanf("%d%d%d%d",&e[i].u,&e[i].v,&e[i].x,&e[i].y);
sort(e+,e++m,cmp);
int ans = inf;
for(int i = ;i <= m;i ++){
int u = e[i].u,v = e[i].v,x = e[i].x,y = e[i].y;
if(findroot(u)==findroot(v)){
int k = query(u,v);
if(val[k] > y) //有更小的边权出现
cut(e[k-n].u,k),cut(e[k-n].v,k);
else continue ;
}
val[i+n] = y; mx[i+n] = i+n;
link(u,i+n); link(v,i+n);
if(findroot() == findroot(n))
ans = min(ans,x+val[query(,n)]);
}
if(ans == inf) ans = -;
printf("%d\n",ans);
return ;
}

bzoj 3669: [Noi2014]魔法森林 (LCT)的更多相关文章

  1. BZOJ 3669: [Noi2014]魔法森林( LCT )

    排序搞掉一维, 然后就用LCT维护加边MST. O(NlogN) ------------------------------------------------------------------- ...

  2. bzoj 3669: [Noi2014] 魔法森林 LCT版

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  3. BZOJ 3669: [Noi2014]魔法森林 [LCT Kruskal | SPFA]

    题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...

  4. BZOJ 3669: [Noi2014]魔法森林(lct+最小生成树)

    传送门 解题思路 \(lct\)维护最小生成树.我们首先按照\(a\)排序,然后每次加入一条边,在图中维护一棵最小生成树.用并查集判断一下\(1\)与\(n\)是否联通,如果联通的话就尝试更新答案. ...

  5. bzoj 3669: [Noi2014]魔法森林

    bzoj 3669: [Noi2014]魔法森林 Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号 ...

  6. bzoj 3669: [Noi2014]魔法森林 动态树

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 363  Solved: 202[Submit][Status] ...

  7. bzoj 3669: [Noi2014]魔法森林 -- 动点spfa

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MB 动点spfa Description 为了得到书法大家的真传,小E同学下定决心 ...

  8. [BZOJ 3669] [Noi2014] 魔法森林 【LCT】

    题目链接:BZOJ - 3669 题目分析 如果确定了带 x 只精灵A,那么我们就是要找一条 1 到 n 的路径,满足只经过 Ai <= x 的边,而且要使经过的边中最大的 Bi 尽量小. 其实 ...

  9. bzoj 3669: [Noi2014]魔法森林(并查集+LCT)

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

随机推荐

  1. Js-函数式编程

    前言 JavaScript是一门多范式语言,即可使用OOP(面向对象),也可以使用FP(函数式),由于笔者最近在学习React相关的技术栈,想进一步深入了解其思想,所以学习了一些FP相关的知识点,本文 ...

  2. 远程连接桌面报:这可能是由于credssp加密oracle修正

      1.Win+R 输入regedit打开注册表 找到对应的以下目录HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Polic ...

  3. [算法&数据结构]深度优先搜索(Depth First Search)

    深度优先 搜索(DFS, Depth First Search) 从一个顶点v出发,首先将v标记为已遍历的顶点,然后选择一个邻接于v的尚未遍历的顶点u,如果u不存在,本次搜素终止.如果u存在,那么从u ...

  4. MySQL, XE7使用FireDAC连接MySQL数据库

    发现使用DBExpress进行MySQL连接老是有莫名其妙的问题,直接改为FireDAC 在上一篇的DataSnap服务框架程序中,将连接的数据库由MSSQL改为本文的MySQL 使用的MySQL数据 ...

  5. 【不定期更新】FPGA/IC岗位常见笔试面试题总结(基础知识)

    1 数字IC(ASIC)设计流程: IC设计分为前端和后端.前端设计主要将HDL语言-->网表,后端设计是网表-->芯片版图. 前端主要有需求分析与架构设计.RTL设计.仿真验证.逻辑综合 ...

  6. SSM —— 注解解析

    @Component是所有受Spring 管理组件的通用形式,@Component注解可以放在类的头上,@Component不推荐使用. @Controller通过@Controller注解说明该类非 ...

  7. c编译器字节对齐指令

    #pragma pack (n)             作用:C编译器将按照n个字节对齐.#pragma pack ()               作用:取消自定义字节对齐方式. #pragma ...

  8. 对Link Map File的初步认识

    什么是Link Map File Link Map File中文直译为链接映射文件,它是在Xcode生成可执行文件的同时生成的链接信息文件,用于描述可执行文件的构造部分,包括了代码段和数据段的分布情况 ...

  9. PLSQL Developer图形化界面新建用户并授权并导入脚本

    最近用了PLSQL Developer第三方的软件.记录一下实现新建用户并授权并导入脚本的功能. 第一步.切换sys用户(如果此处方法已经掌握,直接切换sys即可,就不用看这一步了) 首先检查当前登录 ...

  10. dicom错误解决

    https://github.com/pydicom/pydicom/issues/331 sudo apt-get install python-gdcm