画decision boundary(直线)

%% ============= Part 3: Optimizing using fminunc =============
% In this exercise, you will use a built-in function (fminunc) to find the
% optimal parameters theta.

% Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', 400);  %设置一些选择项,GradObj,on:表示计算过程中需要的计算gradient;MaxIter,400表示最多迭代次数为400

% Run fminunc to obtain the optimal theta
% This function will return theta and the cost
[theta, cost] = ...
fminunc(@(t)(costFunction(t, X, y)), initial_theta, options); %调用matlab的自带的函数fminunc, @(t)(costFunction(t, X, y))创建一个function,参数为t,调用前面写的                                                                                      costFunction函数

返回求得最优解后的theta和cost

% Print theta to screen
fprintf('Cost at theta found by fminunc: %f\n', cost);
fprintf('theta: \n');
fprintf(' %f \n', theta);

% Plot Boundary
plotDecisionBoundary(theta, X, y);   %调用plotDecisionBoundary函数

% Put some labels
hold on;
% Labels and Legend
xlabel('Exam 1 score')
ylabel('Exam 2 score')

% Specified in plot order
legend('Admitted', 'Not admitted')
hold off;

fprintf('\nProgram paused. Press enter to continue.\n');
pause;

plotDecisionBoundary.m

function plotDecisionBoundary(theta, X, y)
%PLOTDECISIONBOUNDARY Plots the data points X and y into a new figure with
%the decision boundary defined by theta
% PLOTDECISIONBOUNDARY(theta, X,y) plots the data points with + for the
% positive examples and o for the negative examples. X is assumed to be
% a either
% 1) Mx3 matrix, where the first column is an all-ones column for the
% intercept.
% 2) MxN, N>3 matrix, where the first column is all-ones

% Plot Data
plotData(X(:,2:3), y);        %调用前面写的plotData函数,参见plotData.m
hold on

if size(X, 2) <= 3               %size(X,2)表示X的列数,包括X最前面的一列1(an all-ones column for the intercept

      % Only need 2 points to define a line, so choose two endpoints % decision boundary为一条直线,画直线只需要两点就可以
     plot_x = [min(X(:,2))-2, max(X(:,2))+2];

% Calculate the decision boundary line
     plot_y = (-1./theta(3)).*(theta(2).*plot_x + theta(1));  %求plot_y(x2)   矩阵和标量相加减(theta(2).*plot_x + theta(1))实质是矩阵每个元素与该标量相加减

% Plot, and adjust axes for better viewing
    plot(plot_x, plot_y)           %调用系统的plot函数,plot_x,plot_y均为1*2矩阵

% Legend, specific for the exercise
    legend('Admitted', 'Not admitted', 'Decision Boundary')  
    axis([30, 100, 30, 100])            %设置X轴与Y轴的范围

else                                       %decision boundary不是一条直线(如为一个圆)时, size(X, 2) > 3 
    % Here is the grid range
    u = linspace(-1, 1.5, 50);        %linearly spaced vector.在-1到1.5之间产生50个间距相等的点(包括-1与1.5这两个点),u为行向量.
    v = linspace(-1, 1.5, 50);

z = zeros(length(u), length(v));
    % Evaluate z = theta*x over the grid
    for i = 1:length(u)
        for j = 1:length(v)
              z(i,j) = mapFeature(u(i), v(j))*theta;
        end
     end
    z = z'; % important to transpose z before calling contour

% Plot z = 0
    % Notice you need to specify the range [0, 0]
    contour(u, v, z, [0, 0], 'LineWidth', 2)
end
hold off

end

mapFeature.m

function out = mapFeature(X1, X2)
% MAPFEATURE Feature mapping function to polynomial features
%
% MAPFEATURE(X1, X2) maps the two input features
% to quadratic features used in the regularization exercise.
%
% Returns a new feature array with more features, comprising of
% X1, X2, X1.^2, X2.^2, X1*X2, X1*X2.^2, etc..
%
% Inputs X1, X2 must be the same size
%

degree = 6;
out = ones(size(X1(:,1)));
for i = 1:degree
     for j = 0:i
         out(:, end+1) = (X1.^(i-j)).*(X2.^j);
     end
end

end

matlab(4) Logistic regression:求θ的值使用fminunc / 画decision boundary(直线)plotDecisionBoundary的更多相关文章

  1. matlab(3) Logistic Regression: 求cost 和gradient \ 求sigmoid的值

    sigmoid.m文件 function g = sigmoid(z)%SIGMOID Compute sigmoid functoon% J = SIGMOID(z) computes the si ...

  2. matlab(2) Logistic Regression: 画出样本数据点plotData

    画出data数据 data数据 34.62365962451697,78.0246928153624,030.28671076822607,43.89499752400101,035.84740876 ...

  3. 机器学习-- Logistic回归 Logistic Regression

    转载自:http://blog.csdn.net/linuxcumt/article/details/8572746 1.假设随Tumor Size变化,预测病人的肿瘤是恶性(malignant)还是 ...

  4. matlab(8) Regularized logistic regression : 不同的λ(0,1,10,100)值对regularization的影响,对应不同的decision boundary\ 预测新的值和计算模型的精度predict.m

    不同的λ(0,1,10,100)值对regularization的影响\ 预测新的值和计算模型的精度 %% ============= Part 2: Regularization and Accur ...

  5. Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression

    原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...

  6. matlab(7) Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg

    Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg ex2_reg.m文件中的部分内容 %% == ...

  7. matlab(6) Regularized logistic regression : plot data(画样本图)

    Regularized logistic regression :  plot data(画样本图) ex2data2.txt 0.051267,0.69956,1-0.092742,0.68494, ...

  8. logistic regression的一些问题,不平衡数据,时间序列,求解惑

    Logistic Regression 1.在有时间序列的特征数据中,怎么运用LR? 不光是LR,其他的模型也是. 有很多基本的模型变形之后,变成带时序的模型.但,个人觉得,这类模型大多不靠谱. 我觉 ...

  9. Machine Learning - 第3周(Logistic Regression、Regularization)

    Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...

随机推荐

  1. Flask项目中使用mysql数据库启动项目是发出警告

    Flask项目中使用mysql数据库启动项目是发出警告: Warning: (1366, "Incorrect string value: '\xD6\xD0\xB9\xFA\xB1\xEA ...

  2. layui开关switch显示不全问题

    先看效果: 开关显示不全,高度也不对称. 解决: 在所用到的html/jsp中自己加css .layui-form-switch { width: 52px; height: 23px; } 再看效果 ...

  3. php有关类和对象的相关知识2

    与类有关的魔术常量: __CLASS__,:获取其所在的类的类名. __METHOD__:获取其所在的方法的方法名. class A{ function f1(){ echo __CLASS__: / ...

  4. JVM(二) 栈内存结构

    栈内存是描述java方法执行的内存模型,每个方法在执行的同时都会创建一个栈帧(Stack Frame)用于存储局部变量表.操作数栈.动态链接.返回出口等信息.每一个方法从调用直至执行完成的过程,就对应 ...

  5. webpack config to use plugin and webpack-dev-server

    Demo3操作手册 本Demo演示如何配合各种plugin进行偏复杂的使用 准备环境 初始化环境, cd到demo1目录之后, 执行如下命令: npm init -y npm install webp ...

  6. Python 机器学习库 NumPy 教程

    0 Numpy简单介绍 Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy ...

  7. [.Net] - 生成短 Guid 标识符的方法

    产生字符串(例:49f949d735f5c79e) private string GenerateId() { ; foreach (byte b in Guid.NewGuid().ToByteAr ...

  8. 如何创建etcd双向通信证书

    # 安装证书生成软件 wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/bin/cfssl wget https://pkg.cfss ...

  9. python 之 网络编程(基于UDP协议的套接字通信)

    8.5 基于UDP协议的套接字通信 UDP协议:数据报协议 特点:无连接,一发对应一收,先启动哪一端都不会报错 优点:发送效率高,但有效传输的数据量最多为500bytes 缺点:不可靠:发送数据,无需 ...

  10. python 之 并发编程(生产者消费者模型、守护进程的应用)

    9.8 生产者消费者模型 该模型中包含两类重要的角色: 1.生产者:将负责造数据的任务比喻为生产者 2.消费者:接收生产者造出的数据来做进一步的处理的被比喻成消费者 实现生产者消费者模型三要素:1.生 ...