matlab(4) Logistic regression:求θ的值使用fminunc / 画decision boundary(直线)plotDecisionBoundary
画decision boundary(直线)
%% ============= Part 3: Optimizing using fminunc =============
% In this exercise, you will use a built-in function (fminunc) to find the
% optimal parameters theta.
% Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', 400); %设置一些选择项,GradObj,on:表示计算过程中需要的计算gradient;MaxIter,400表示最多迭代次数为400
% Run fminunc to obtain the optimal theta
% This function will return theta and the cost
[theta, cost] = ...
fminunc(@(t)(costFunction(t, X, y)), initial_theta, options); %调用matlab的自带的函数fminunc, @(t)(costFunction(t, X, y))创建一个function,参数为t,调用前面写的 costFunction函数
返回求得最优解后的theta和cost
% Print theta to screen
fprintf('Cost at theta found by fminunc: %f\n', cost);
fprintf('theta: \n');
fprintf(' %f \n', theta);
% Plot Boundary
plotDecisionBoundary(theta, X, y); %调用plotDecisionBoundary函数
% Put some labels
hold on;
% Labels and Legend
xlabel('Exam 1 score')
ylabel('Exam 2 score')
% Specified in plot order
legend('Admitted', 'Not admitted')
hold off;
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
plotDecisionBoundary.m
function plotDecisionBoundary(theta, X, y)
%PLOTDECISIONBOUNDARY Plots the data points X and y into a new figure with
%the decision boundary defined by theta
% PLOTDECISIONBOUNDARY(theta, X,y) plots the data points with + for the
% positive examples and o for the negative examples. X is assumed to be
% a either
% 1) Mx3 matrix, where the first column is an all-ones column for the
% intercept.
% 2) MxN, N>3 matrix, where the first column is all-ones
% Plot Data
plotData(X(:,2:3), y); %调用前面写的plotData函数,参见plotData.m
hold on
if size(X, 2) <= 3 %size(X,2)表示X的列数,包括X最前面的一列1(an all-ones column for the intercept)
% Only need 2 points to define a line, so choose two endpoints % decision boundary为一条直线,画直线只需要两点就可以
plot_x = [min(X(:,2))-2, max(X(:,2))+2];
% Calculate the decision boundary line
plot_y = (-1./theta(3)).*(theta(2).*plot_x + theta(1)); %求plot_y(x2) 矩阵和标量相加减(theta(2).*plot_x + theta(1))实质是矩阵每个元素与该标量相加减
% Plot, and adjust axes for better viewing
plot(plot_x, plot_y) %调用系统的plot函数,plot_x,plot_y均为1*2矩阵
% Legend, specific for the exercise
legend('Admitted', 'Not admitted', 'Decision Boundary')
axis([30, 100, 30, 100]) %设置X轴与Y轴的范围
else %decision boundary不是一条直线(如为一个圆)时, size(X, 2) > 3
% Here is the grid range
u = linspace(-1, 1.5, 50); %linearly spaced vector.在-1到1.5之间产生50个间距相等的点(包括-1与1.5这两个点),u为行向量.
v = linspace(-1, 1.5, 50);
z = zeros(length(u), length(v));
% Evaluate z = theta*x over the grid
for i = 1:length(u)
for j = 1:length(v)
z(i,j) = mapFeature(u(i), v(j))*theta;
end
end
z = z'; % important to transpose z before calling contour
% Plot z = 0
% Notice you need to specify the range [0, 0]
contour(u, v, z, [0, 0], 'LineWidth', 2)
end
hold off
end
mapFeature.m
function out = mapFeature(X1, X2)
% MAPFEATURE Feature mapping function to polynomial features
%
% MAPFEATURE(X1, X2) maps the two input features
% to quadratic features used in the regularization exercise.
%
% Returns a new feature array with more features, comprising of
% X1, X2, X1.^2, X2.^2, X1*X2, X1*X2.^2, etc..
%
% Inputs X1, X2 must be the same size
%
degree = 6;
out = ones(size(X1(:,1)));
for i = 1:degree
for j = 0:i
out(:, end+1) = (X1.^(i-j)).*(X2.^j);
end
end
end
matlab(4) Logistic regression:求θ的值使用fminunc / 画decision boundary(直线)plotDecisionBoundary的更多相关文章
- matlab(3) Logistic Regression: 求cost 和gradient \ 求sigmoid的值
sigmoid.m文件 function g = sigmoid(z)%SIGMOID Compute sigmoid functoon% J = SIGMOID(z) computes the si ...
- matlab(2) Logistic Regression: 画出样本数据点plotData
画出data数据 data数据 34.62365962451697,78.0246928153624,030.28671076822607,43.89499752400101,035.84740876 ...
- 机器学习-- Logistic回归 Logistic Regression
转载自:http://blog.csdn.net/linuxcumt/article/details/8572746 1.假设随Tumor Size变化,预测病人的肿瘤是恶性(malignant)还是 ...
- matlab(8) Regularized logistic regression : 不同的λ(0,1,10,100)值对regularization的影响,对应不同的decision boundary\ 预测新的值和计算模型的精度predict.m
不同的λ(0,1,10,100)值对regularization的影响\ 预测新的值和计算模型的精度 %% ============= Part 2: Regularization and Accur ...
- Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression
原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...
- matlab(7) Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg
Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg ex2_reg.m文件中的部分内容 %% == ...
- matlab(6) Regularized logistic regression : plot data(画样本图)
Regularized logistic regression : plot data(画样本图) ex2data2.txt 0.051267,0.69956,1-0.092742,0.68494, ...
- logistic regression的一些问题,不平衡数据,时间序列,求解惑
Logistic Regression 1.在有时间序列的特征数据中,怎么运用LR? 不光是LR,其他的模型也是. 有很多基本的模型变形之后,变成带时序的模型.但,个人觉得,这类模型大多不靠谱. 我觉 ...
- Machine Learning - 第3周(Logistic Regression、Regularization)
Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...
随机推荐
- Flask项目中使用mysql数据库启动项目是发出警告
Flask项目中使用mysql数据库启动项目是发出警告: Warning: (1366, "Incorrect string value: '\xD6\xD0\xB9\xFA\xB1\xEA ...
- layui开关switch显示不全问题
先看效果: 开关显示不全,高度也不对称. 解决: 在所用到的html/jsp中自己加css .layui-form-switch { width: 52px; height: 23px; } 再看效果 ...
- php有关类和对象的相关知识2
与类有关的魔术常量: __CLASS__,:获取其所在的类的类名. __METHOD__:获取其所在的方法的方法名. class A{ function f1(){ echo __CLASS__: / ...
- JVM(二) 栈内存结构
栈内存是描述java方法执行的内存模型,每个方法在执行的同时都会创建一个栈帧(Stack Frame)用于存储局部变量表.操作数栈.动态链接.返回出口等信息.每一个方法从调用直至执行完成的过程,就对应 ...
- webpack config to use plugin and webpack-dev-server
Demo3操作手册 本Demo演示如何配合各种plugin进行偏复杂的使用 准备环境 初始化环境, cd到demo1目录之后, 执行如下命令: npm init -y npm install webp ...
- Python 机器学习库 NumPy 教程
0 Numpy简单介绍 Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy ...
- [.Net] - 生成短 Guid 标识符的方法
产生字符串(例:49f949d735f5c79e) private string GenerateId() { ; foreach (byte b in Guid.NewGuid().ToByteAr ...
- 如何创建etcd双向通信证书
# 安装证书生成软件 wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/bin/cfssl wget https://pkg.cfss ...
- python 之 网络编程(基于UDP协议的套接字通信)
8.5 基于UDP协议的套接字通信 UDP协议:数据报协议 特点:无连接,一发对应一收,先启动哪一端都不会报错 优点:发送效率高,但有效传输的数据量最多为500bytes 缺点:不可靠:发送数据,无需 ...
- python 之 并发编程(生产者消费者模型、守护进程的应用)
9.8 生产者消费者模型 该模型中包含两类重要的角色: 1.生产者:将负责造数据的任务比喻为生产者 2.消费者:接收生产者造出的数据来做进一步的处理的被比喻成消费者 实现生产者消费者模型三要素:1.生 ...