BZOJ1786: [Ahoi2008]Pair 配对/1831: [AHOI2008]逆序对
这两道题是一样的。
可以发现,-1变成的数是单调不降。
记录下原有的逆序对个数。
预处理出每个点取每个值所产生的逆序对个数,然后dp转移。
#include<cstring>
#include<iostream>
#include<cstdio>
#include<map>
#include<cmath>
#include<algorithm>
#define rep(i,l,r) for (int i=l;i<=r;i++)
#define down(i,l,r) for (int i=l;i>=r;i--)
#define clr(x,y) memset(x,y,sizeof(x))
#define low(x) (x&(-x))
#define maxn 10050
#define inf 2000000000
#define mm 1000000007
using namespace std;
int f[maxn][],a[maxn],t[maxn],pos[maxn],c[maxn][];
int now,n,k,cnt,ans;
int read(){
int x=,f=; char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-; ch=getchar();}
while (isdigit(ch)) {x=x*+ch-''; ch=getchar();}
return x*f;
}
void add(int x,int y){
while (x<=k){
t[x]=t[x]+y;
x+=low(x);
}
}
int ask(int x){
int ans=;
while (x){
ans+=t[x];
x-=low(x);
}
return ans;
}
int main(){
n=read(); k=read();
rep(i,,n){
a[i]=read();
if (a[i]!=-){
ans+=ask(k)-ask(a[i]); add(a[i],);
}
else {
pos[++cnt]=i;
rep(j,,k) c[i][j]+=ask(k)-ask(j);
}
}
clr(t,);
down(i,n,){
if (a[i]!=-) add(a[i],);
else {
rep(j,,k) c[i][j]+=ask(j-);
}
}
rep(i,,cnt) rep(j,,k) f[i][j]=inf;
rep(i,,cnt){
int now=pos[i];
rep(j,,k) f[i][j]=min(f[i][j-],f[i-][j]+c[now][j]);
}
printf("%d\n",f[cnt][k]+ans);
return ;
}
BZOJ1786: [Ahoi2008]Pair 配对/1831: [AHOI2008]逆序对的更多相关文章
- bzoj1786: [Ahoi2008]Pair 配对&&1831: [AHOI2008]逆序对
一个自以为很对的东西,我们往-1放的数肯定是不增的. 然后就预处理一下,假如i这个位置放j会多多少逆序对. DP一下,我的复杂度应该是O(n*m^2)的,然而你随便搞都能省掉一个m吧,我算了算好像可以 ...
- 【BZOJ1786】[Ahoi2008]Pair 配对 DP
[BZOJ1786][Ahoi2008]Pair 配对 Description Input Output Sample Input 5 4 4 2 -1 -1 3 Sample Output 4 题解 ...
- BZOJ1786 [Ahoi2008]Pair 配对 动态规划 逆序对
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1786 题意概括 给出长度为n的数列,只会出现1~k这些正整数.现在有些数写成了-1,这些-1可以变 ...
- 【BZOJ1786】[Ahoi2008]Pair 配对
题解: 打表出奇迹 能发现所有ai一定是不减的 其实很好证明啊.. 考虑两个位置x y(y在x右边) x的最优值已经知道了 考虑y处 先让y=x,然后开始变化 因为x处已经是最优的了,所以如果减小,那 ...
- B1786 [Ahoi2008]Pair 配对 逆序对+dp
这个题有点意思,一开始没想到用dp,没啥思路,后来看题解才恍然大悟:k才1~100,直接枚举每个-1点的k取值进行dp就行了.先预处理出来sz[i][j] i左边的比j大的数,lz[i][j] i ...
- bzoj1831: [AHOI2008]逆序对(DP+双精bzoj1786)
1831: [AHOI2008]逆序对 Description 小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之 ...
- 【BZOJ】1831: [AHOI2008]逆序对
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1831 考虑$-1$的位置上填写的数字一定是不降的. 令${f[i][j]}$表示$DP$到 ...
- 洛谷 P4280 bzoj1786 [AHOI2008]逆序对(dp)
题面 luogu bzoj 题目大意: 给你一个长度为\(n\)的序列,元素都在\(1-k\)之间,有些是\(-1\),让你把\(-1\)也变成\(1-k\)之间的数,使得逆序对最多,求逆序对最少是多 ...
- BZOJ 1831: [AHOI2008]逆序对
题目大意: 给出一个序列,有几个位置上的数字任意.求最小的逆序对数. 题解: 自己决定放置的数一定是单调不降的.不然把任意两个交换一下就能证明一定会增加逆序对. 然后就可以DP了,f[i][j]表示第 ...
随机推荐
- Vue购物车实例
<div class="buyCarBox" id="buyCarBox" v-cloak> <div class="haveClo ...
- C:指针函数一些误区
当我们学完指针,知道每个数在内存中都占有一定的字节,也就是地址,才有取地址符号&,所以要交换两个数必须把这两个数所对应的内存互换,比如a=2;b=3;要让它们互换且输出,我们用一个函数来试试 ...
- nginx取结构体地址
linux内核提供了一个container_of()宏,可以根据结构体某个成员的地址找到父结构的地址. #define container_of(ptr, type, member) ({ \ con ...
- Java面试题汇总
第一阶段:三年我认为三年对于程序员来说是第一个门槛,这个阶段将会淘汰掉一批不适合写代码的人.这一阶段,我们走出校园,迈入社会,成为一名程序员,正式从书本 上的内容迈向真正的企业级开发.我们知道如何团队 ...
- ArcGIS API for JavaScript 4.2学习笔记[14] 弹窗的位置、为弹窗添加元素
这一节我们来看看弹窗的位置和弹窗上能放什么. 先一句话总结: 位置:可以随便(点击时出现或者一直固定在某个位置),也可以指定位置 能放什么:四种,文字.媒体(图片等).表格.附件. [Part I 位 ...
- ArcGIS 网络分析[8.1] 资料1 使用AO打开或创建网络数据集之【打开】
为了创建或打开一个网络数据集,你必须使用NetworkDatasetFDExtension对象(文件地理数据库中的数据集)或NetworkDatasetWorkspaceExtension对象(对于S ...
- 搜索模式| 系列2——KMP算法
给定一个文本txt [0..n-1]和一个模式pat [0..m-1],写一个搜索函数search(char pat [],char txt []),在txt中打印所有出现的pat [] [].可以假 ...
- Oracle 用户操作表权限
grant select any table to xxx 将使得xxx用户能够查看到所有用户的表:正确的授权不能是这样: 用户是隔离表的schema,授权时..
- Centos7 安装oracle数据库
参考的内容: http://docs.oracle.com/cd/E11882_01/install.112/e24325/toc.htm#CHDCBCJF http://www.cnblogs.co ...
- 安装spark单机环境
(假定已经装好的hadoop,不管你装没装好,反正我是装好了) 1 下载spark安装包 http://spark.apache.org/downloads.html 下载spark-1.6.1-bi ...