这两道题是一样的。

可以发现,-1变成的数是单调不降。

记录下原有的逆序对个数。

预处理出每个点取每个值所产生的逆序对个数,然后dp转移。

#include<cstring>
#include<iostream>
#include<cstdio>
#include<map>
#include<cmath>
#include<algorithm>
#define rep(i,l,r) for (int i=l;i<=r;i++)
#define down(i,l,r) for (int i=l;i>=r;i--)
#define clr(x,y) memset(x,y,sizeof(x))
#define low(x) (x&(-x))
#define maxn 10050
#define inf 2000000000
#define mm 1000000007
using namespace std;
int f[maxn][],a[maxn],t[maxn],pos[maxn],c[maxn][];
int now,n,k,cnt,ans;
int read(){
int x=,f=; char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-; ch=getchar();}
while (isdigit(ch)) {x=x*+ch-''; ch=getchar();}
return x*f;
}
void add(int x,int y){
while (x<=k){
t[x]=t[x]+y;
x+=low(x);
}
}
int ask(int x){
int ans=;
while (x){
ans+=t[x];
x-=low(x);
}
return ans;
}
int main(){
n=read(); k=read();
rep(i,,n){
a[i]=read();
if (a[i]!=-){
ans+=ask(k)-ask(a[i]); add(a[i],);
}
else {
pos[++cnt]=i;
rep(j,,k) c[i][j]+=ask(k)-ask(j);
}
}
clr(t,);
down(i,n,){
if (a[i]!=-) add(a[i],);
else {
rep(j,,k) c[i][j]+=ask(j-);
}
}
rep(i,,cnt) rep(j,,k) f[i][j]=inf;
rep(i,,cnt){
int now=pos[i];
rep(j,,k) f[i][j]=min(f[i][j-],f[i-][j]+c[now][j]);
}
printf("%d\n",f[cnt][k]+ans);
return ;
}

BZOJ1786: [Ahoi2008]Pair 配对/1831: [AHOI2008]逆序对的更多相关文章

  1. bzoj1786: [Ahoi2008]Pair 配对&&1831: [AHOI2008]逆序对

    一个自以为很对的东西,我们往-1放的数肯定是不增的. 然后就预处理一下,假如i这个位置放j会多多少逆序对. DP一下,我的复杂度应该是O(n*m^2)的,然而你随便搞都能省掉一个m吧,我算了算好像可以 ...

  2. 【BZOJ1786】[Ahoi2008]Pair 配对 DP

    [BZOJ1786][Ahoi2008]Pair 配对 Description Input Output Sample Input 5 4 4 2 -1 -1 3 Sample Output 4 题解 ...

  3. BZOJ1786 [Ahoi2008]Pair 配对 动态规划 逆序对

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1786 题意概括 给出长度为n的数列,只会出现1~k这些正整数.现在有些数写成了-1,这些-1可以变 ...

  4. 【BZOJ1786】[Ahoi2008]Pair 配对

    题解: 打表出奇迹 能发现所有ai一定是不减的 其实很好证明啊.. 考虑两个位置x y(y在x右边) x的最优值已经知道了 考虑y处 先让y=x,然后开始变化 因为x处已经是最优的了,所以如果减小,那 ...

  5. B1786 [Ahoi2008]Pair 配对 逆序对+dp

    这个题有点意思,一开始没想到用dp,没啥思路,后来看题解才恍然大悟:k才1~100,直接枚举每个-1点的k取值进行dp就行了.先预处理出来sz[i][j]  i左边的比j大的数,lz[i][j]  i ...

  6. bzoj1831: [AHOI2008]逆序对(DP+双精bzoj1786)

    1831: [AHOI2008]逆序对 Description 小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之 ...

  7. 【BZOJ】1831: [AHOI2008]逆序对

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1831 考虑$-1$的位置上填写的数字一定是不降的. 令${f[i][j]}$表示$DP$到 ...

  8. 洛谷 P4280 bzoj1786 [AHOI2008]逆序对(dp)

    题面 luogu bzoj 题目大意: 给你一个长度为\(n\)的序列,元素都在\(1-k\)之间,有些是\(-1\),让你把\(-1\)也变成\(1-k\)之间的数,使得逆序对最多,求逆序对最少是多 ...

  9. BZOJ 1831: [AHOI2008]逆序对

    题目大意: 给出一个序列,有几个位置上的数字任意.求最小的逆序对数. 题解: 自己决定放置的数一定是单调不降的.不然把任意两个交换一下就能证明一定会增加逆序对. 然后就可以DP了,f[i][j]表示第 ...

随机推荐

  1. DNS查询相关

    本文同时发表在https://github.com/zhangyachen/zhangyachen.github.io/issues/45 一种简单的设计方式是在因特网上使用一个DNS服务器,该服务器 ...

  2. bzoj 4813: [Cqoi2017]小Q的棋盘

    Description 小Q正在设计一种棋类游戏.在小Q设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能 在有连线的格点之间移动.整个棋盘上共有V个格点,编号为0,1,2-,V- ...

  3. ES6 let和const命令(2)

    为什么要使用块级作用域 在ES5中只有全局作用域和函数作用域,没有块级作用域,因此带来了这些麻烦 内层变量可能会覆盖外层变量 var tmp = new Date(); console.log(tmp ...

  4. ES6 函数的扩展(1)

    1. 函数参数的默认值 基本用法 在ES6之前,不能直接为函数的参数指定默认值,为了避免这个问题,通常需要先判断一下参数y是否被赋值,如果没有,再等于默认值. ES6允许为函数的参数设置默认值,即直接 ...

  5. RabbitMQ教程(一) ——win7下安装RabbitMQ

    RabbitMQ依赖erlang,所以先安装erlang,然后再安装RabbitMQ; 下载RabbitMQ,下载地址: rabbitmq-server-3.5.6.exe和erlang,下载地址:o ...

  6. Java订单号生成,唯一订单号(日均千万级别不重复)

    Java订单号生成,唯一订单号 相信大家都可以搜索到很多的订单的生成方式,不懂的直接百度.. 1.订单号需要具备以下几个特点. 1.1 全站唯一性. 1.2 最好可读性. 1.3 随机性,不能重复,同 ...

  7. Node.js 蚕食计划(四)—— Express + SQL Server 搭建电影网站

    前段时间在慕课网上看了 scott 大神的<node+mongodb建站攻略>课程,按照自己的思路做了一遍,发博客记录一下 一.项目介绍 这个项目是一个简单的电影网站,由首页.详情页.评论 ...

  8. 商业智能(BI)选型手册(转载)

    摘自http://articles.e-works.net.cn/bi/Article126429.htm 1.前言 互联网时代企业数据呈现爆发式增长,全面考验着企业的数据处理和分析能力.面对大容量. ...

  9. Java的成员变量初始化

    对于方法里面的成员变量,Java要求程序员强制提供一个初始化的值.比如下面这个方法就会出错: public class Breakyizhan{ public void Z(){ int z; z++ ...

  10. [Micropython]TPYBoardV102 Dfu固件烧写教程

    TPYBoardv10x固件烧写一直是大家比较关心的问题,上次教大家用SWD接口烧写TPYBoard的固件,这次教大家用另一种方式烧写我们TPYBoardv10x的固件,直接用dfu模式烧写固件. 用 ...