Agri-Net
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 44032   Accepted: 18001

Description

Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course. 
Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms. 
Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm. 
The distance between any two farms will not exceed 100,000. 

Input

The input includes several cases. For each case, the first line contains the number of farms, N (3 <= N <= 100). The following lines contain the N x N conectivity matrix, where each element shows the distance from on farm to another. Logically, they are N lines of N space-separated integers. Physically, they are limited in length to 80 characters, so some lines continue onto others. Of course, the diagonal will be 0, since the distance from farm i to itself is not interesting for this problem.

Output

For each case, output a single integer length that is the sum of the minimum length of fiber required to connect the entire set of farms.

Sample Input

4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0

Sample Output

28

Source

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

#include<stdio.h>
#include<string.h>
int map[105][105];
int dis[105],vis[105];
int n;
#define inf 999999999
int prim(int u){
int sum=0;
for(int i=1;i<=n;i++){
dis[i]=map[u][i];
}
vis[u]=1;
for(int i=1;i<n;i++){
int tmin=inf;
int temp;
for(int j=1;j<=n;j++){
if(dis[j]<tmin&&!vis[j]){
tmin=dis[j];
temp=j;
}
}
sum+=tmin;
vis[temp]=1;
for(int k=1;k<=n;k++){
if(dis[k]>map[temp][k]&&!vis[k])
dis[k]=map[temp][k];
}
}
return sum;
}
int main(){
while(scanf("%d",&n)!=EOF){
memset(vis,0,sizeof(vis));
memset(dis,0,sizeof(dis));
memset(map,0,sizeof(map));
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
scanf("%d",&map[i][j]);
}
}
printf("%d\n",prim(1));

}
return 0;
}

poj1258 Agri-Net 最小生成树的更多相关文章

  1. Poj1258 Agri-Net (最小生成树 Prim算法 模板题)

    题目链接:http://poj.org/problem?id=1258 Description Farmer John has been elected mayor of his town! One ...

  2. POJ1258 Agri-Net【最小生成树】

    题意: 有n个农场,已知这n个农场都互相相通,有一定的距离,现在每个农场需要装光纤,问怎么安装光纤能将所有农场都连通起来,并且要使光纤距离最小,输出安装光纤的总距离. 思路: 又是一个最小生成树,因为 ...

  3. POJ1258 Agri-Net MST最小生成树题解

    搭建一个最小代价的网络,最原始的最小生成树的应用. 这里使用Union find和Kruskal算法求解. 注意: 1 给出的数据是原始的矩阵图,可是须要转化为边表示的图,方便运用Kruskal,由于 ...

  4. POJ-1258 Agri-Net(最小生成树)

    Description Farmer John has been elected mayor of his town! One of his campaign promises was to brin ...

  5. 最小生成树 prime poj1258

    题意:给你一个矩阵M[i][j]表示i到j的距离 求最小生成树 思路:裸最小生成树 prime就可以了 最小生成树专题 AC代码: #include "iostream" #inc ...

  6. POJ1258 基础最小生成树

    本文出自:http://blog.csdn.net/svitter 题意:给出一个数字n代表邻接矩阵的大小,随后给出邻接矩阵的值.输出最小生成树的权值. 题解: prime算法的基本解法: 1.选择一 ...

  7. 最小生成树Prim poj1258 poj2485 poj1789

    poj:1258 Agri-Net Time Limit: 1000 MS Memory Limit: 10000 KB 64-bit integer IO format: %I64d , %I64u ...

  8. POJ1258:Agri-Net(最小生成树模板题)

    http://poj.org/problem?id=1258 Description Farmer John has been elected mayor of his town! One of hi ...

  9. POJ1258 (最小生成树prim)

    Agri-Net Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 46319   Accepted: 19052 Descri ...

  10. POJ1258最小生成树简单题

    题意:       给你个图,让你求一颗最小生成树. 思路:      裸题,克鲁斯卡尔或者普利姆都行. #include<stdio.h> #include<algorithm&g ...

随机推荐

  1. [AHOI2013]立方体(三维bit)

    [Ahoi2013]立方体 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 130  Solved: 55[Submit][Status] Descrip ...

  2. jquery 的 sort 函数

    members = [45, 23, 12, 34];members = members.sort(function(a, b){return a-b; );这里面a-b为升序,b-a降序排列:但a, ...

  3. (转)在WAMPSERVER下增加多版本的PHP(PHP5.3,PHP5.4,PHP5.5)支持

    原文:http://www.cnblogs.com/lyongde/p/3745030.html 此文在原文的基础上改进了几个步骤,因为经本人实践,原文无法正确配置. WAMPServer可以让开发者 ...

  4. 点击Cell中的按钮时,如何取所在的Cell

    4.点击Cell中的按钮时,如何取所在的Cell:-(void)OnTouchBtnInCell:(UIButton *)Btu{CGPoint point = btn.center;point = ...

  5. BIEE修改图片步骤:修改BANNER

    1.进入目录地址: D:\Oracle\Middleware\user_projects\domains\bifoundation_domain\servers\bi_server1\tmp\_WL_ ...

  6. CodeReview Learning

    目录 . 引言 . 代码检视的指导思想 . 代码检视的内容 . 回归测试 0. 引言 代码检视(Code Review)是指软件开发人员在完成代码设计.编写.调试后展开的个人或群体性的代码阅读过程,代 ...

  7. 数字证书文件格式(cer和pfx)的区别

    作为文件形式存在的证书一般有这几种格式: 1.带有私钥的证书 由Public Key Cryptography Standards #12,PKCS#12标准定义,包含了公钥和私钥的二进制格式的证书形 ...

  8. Longest Common Subsequence (LCS)

    最长公共子序列(LCS)是经典的DP问题,求序列a[1...n], b[1..m]的LCS. 状态是DP[i][j],表示a[1..i],b[1..j]的LCS. DP转移方程是 DP[i][j]= ...

  9. Android 服务类Service 的详细学习

    http://blog.csdn.net/vipzjyno1/article/details/26004831 Android服务类Service学习四大组建   目录(?)[+] 什么是服务 服务有 ...

  10. 透透彻彻IoC(你没有理由不懂!)

    http://www.myexception.cn/open-source/418322.html 引述:IoC(控制反转:Inverse of Control)是Spring容器的内核,AOP.声明 ...