Guass消元

约旦·高斯消元法 求线性方程组

我们用一个\(n*(n+1)\)的矩阵存储线性方程组各项系数和零次项系数。

  1. 每一次找到一个未知数系数最大的方程,交换当前行方程和该方程,并将其他行该未知数的系数化为零。
  2. 重复n次即可。
  3. 最后第\(a[i][i]\)个数就是第i个未知数的系数,\(a[i][n+1]\)是等式右侧的数,用后者除以前者即可。
  • 当化第i个方程时,若找到所有方程的最大值为零,即都为零,则无解。
  • 当一个未知数在多于0个少于n个方程中有系数,该未知数为自由元,线性方程组有无数组解。

洛谷P3389

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cctype>
#include<cmath>
using namespace std;
inline int read(){
int x=0,w=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=(x<<3)+(x<<1)+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int maxn=105;
double a[maxn][maxn];
int n;
inline void work(){
n=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=n+1;j++)a[i][j]=(double)read();
for(int i=1;i<=n;i++){
int mx=i;
for(int j=i+1;j<=n;j++)
if(fabs(a[j][i])>fabs(a[mx][i]))mx=j;
swap(a[i],a[mx]);
if(!a[i][i])return (void)puts("No Solution");
for(int j=1;j<=n;j++){
if(j==i)continue;
double tmp=a[j][i]/a[i][i];
for(int k=i+1;k<=n+1;k++)
a[j][k]-=a[i][k]*tmp;
}
}
for(int i=1;i<=n;i++)printf("%.2lf\n",a[i][n+1]/a[i][i]);
}
}
signed main(){
star::work();
return 0;
}

让我们再做一道不那么板子的题目:

P4035 球形空间产生器

简述题意,我们需要求一个n维向量\((x_1,x_2,\dots,x_n)\)使得对于每个i都满足\(\sum_{j=1}^{n}(a_{i,j}-x_j)^2=dis\),

其中\(dis\)为未知常数。

所以我们考虑消去这个\(dis\):

我们将相邻的i的方程做差得到:

\[\sum_{j=1}^{n}a_{i+1,j}^2-a_{i,j}^{2}-2x_j(a_{i+1,j}-a_{i,j})=0
\]

然后将常数项与未知数剥离:

\[\sum_{j=1}^{n}2x_j(a_{a+1,j}-a_{i,j})=\sum_{j=1}^na_{i+1,j}^2-a_{i,j}^2
\]

解线性方程组即可。

题目给定有解。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cctype>
#include<cmath>
using namespace std;
const int maxn=12;
double b[maxn][maxn],a[maxn][maxn];
int n;
int main(){
scanf("%d",&n);
for(int i=1;i<=n+1;i++)
for(int j=1;j<=n;j++)scanf("%lf",&b[i][j]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
a[i][j]=(b[i][j]-b[i+1][j])*2;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
a[i][n+1]+=b[i][j]*b[i][j]-b[i+1][j]*b[i+1][j];
}
for(int i=1;i<=n;i++){
int mx=i;
for(int j=i+1;j<=n;j++)if(fabs(a[j][i])>fabs(a[mx][i]))mx=j;
swap(a[mx],a[i]);
for(int j=1;j<=n;j++){
if(j==i)continue;
double tmp=a[j][i]/a[i][i];
for(int k=i+1;k<=n+1;k++)
a[j][k]-=a[i][k]*tmp;
}
}
for(int i=1;i<=n;i++)printf("%.3lf ",a[i][n+1]/a[i][i]);
return 0;
}

求行列式的值

依据行列式的性质,我们用高斯消元将行列式转变为下三角矩阵,行列式的值就为对角线上各数的积。

  • 当行列式其中两行成比例时行列式值为零。所以我们在高斯消元的时候发现只要有一列找不到有值的数就是这种情况,直接返回0即可。
  • 一般来说,求行列式有可能加模数或者行列式值很大,我们在除的时候用逆元搞就行了。
inline int Guass(int *a){
int ans=1;
for(int i=1;i<=n;i++){
int pos=0;
for(int j=i;j<=n;j++)if(a[j][i]){pos=j;break;}
if(!pos)return 0;
if(pos!=i)swap(a[pos],a[i]);
int inv=fpow(a[i][i],mod-2,mod);//快速幂
for(int j=i+1;j<=n;j++){
if(a[j][i]){
ans=ans*inv%mod;
for(int k=i+1;k<=n;k++)
a[j][k]=((a[j][k]*a[i][i]%mod-a[i][k]*a[j][i]%mod)%mod+mod)%mod;
a[j][i]=0;
}
}
}
for(int i=1;i<=n;i++)ans=ans*a[i][i]%mod;
return ans;
}

求逆矩阵

根据rsk大佬的课,我们可以知道矩阵求逆有一个方法是:

  1. 给原矩阵右边接一个等大的单位矩阵。
  2. 高斯消元,将原矩阵转为单位矩阵。
  3. 右侧矩阵即为所求。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cctype>
#include<cmath>
#define int long long
using namespace std;
inline int read(){
int x=0,w=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=(x<<3)+(x<<1)+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int maxn=405,mod=1e9+7;
int n,a[maxn][maxn<<1];
inline int fpow(int a,int b){
int ans=1;
for(;b;b>>=1,a=a*a%mod)if(b&1)ans=ans*a%mod;
return ans;
}
inline void work(){
n=read();
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)a[i][j]=read();
a[i][n+i]=1;
}
for(int i=1;i<=n;i++){
int mx=i;
for(int j=i+1;j<=n;j++)
if(a[mx][i]<a[j][i])mx=j;
swap(a[mx],a[i]);
if(!a[i][i])return (void)puts("No Solution");
int inv=fpow(a[i][i],mod-2);
for(int j=1;j<=n;j++){
if(j==i)continue;
for(int tmp=a[j][i]*inv%mod,k=1;k<=n*2;k++)//k可以从i+1开始,不会更新下三角
a[j][k]=(a[j][k]-a[i][k]*tmp%mod+mod)%mod;
}
} for(int i=1;i<=n;i++){
for(int tmp=fpow(a[i][i],mod-2),j=1;j<=n;j++)
printf("%lld ",a[i][j+n]*tmp%mod);
puts("");
}
}
}
signed main(){
star::work();
return 0;
}

Guass消元总结的更多相关文章

  1. UVALive 7138 The Matrix Revolutions(Matrix-Tree + 高斯消元)(2014 Asia Shanghai Regional Contest)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...

  2. BZOJ 3270 && BZOJ 1778 (期望DP && 高斯消元)

    BZOJ 3270 :设置状态为Id(x,y)表示一人在x,一人在y这个状态的概率. 所以总共有n^2种状态. p[i]表示留在该点的概率,Out[i]=(1-p[i])/Degree[i]表示离开该 ...

  3. hdu 5833 Zhu and 772002 高斯消元

    Zhu and 772002 Problem Description Zhu and 772002 are both good at math. One day, Zhu wants to test ...

  4. hdu4418(概率dp + 高斯消元)

    应该是一个入门级别的题目. 但是有几个坑点. 1. 只选择x能到达的点作为guass中的未知数. 2. m可能大于n,所以在构建方程组时未知数的系数不能直接等于,要+= 3.题意貌似说的有问题,D为- ...

  5. hdu 5755(高斯消元——模线性方程组模板)

    PS. 看了大神的题解,发现确实可以用m个未知数的高斯消元做.因为确定了第一行的情况,之后所有行的情况都可以根据第一行推. 这样复杂度直接变成O(m*m*m) 知道了是高斯消元后,其实只要稍加处理,就 ...

  6. 【高斯消元】BZOJ 1770: [Usaco2009 Nov]lights 燈

    Description 貝希和她的閨密們在她們的牛棚中玩遊戲.但是天不從人願,突然,牛棚的電源跳閘了,所有的燈都被關閉了.貝希是一個很膽小的女生,在伸手不見拇指的無盡的黑暗中,她感到驚恐,痛苦與絕望. ...

  7. 【高斯消元】Poj 1222:EXTENDED LIGHTS OUT

    Description In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each ...

  8. 【高斯消元】BZOJ 1013: [JSOI2008]球形空间产生器sphere

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...

  9. ZJUT 1423 地下迷宫(期望DP&高斯消元)

    地下迷宫 Time Limit:1000MS  Memory Limit:32768K Description: 由于山体滑坡,DK被困在了地下蜘蛛王国迷宫.为了抢在DH之前来到TFT,DK必须尽快走 ...

随机推荐

  1. postman实现参数化执行及断言处理

    一.假设需要做的测试的参数如下: 注意保存为.csv文件时一定要选择格式为UTF-8 ,避免乱码. 二.输入参数和期望结果在postman中的用法: 注意一定要通过runner的方式进行运行,选择对应 ...

  2. 28.qt quick-ListView高仿微信好友列表和聊天列表

    1.视图模型介绍  在Qml中.常见的View视图有: ListView: 列表视图,视图中数据来自ListModel.XmlListModel或c++中继承自QAbstractItemModel或Q ...

  3. Atcoder rc122-c Calculator 斐波那契

    传送门 题解 先说结论: 任意正整数可以拆分成若干个斐波那契数 斐波那契数列: 1 1 2 3 5 8 13 21 34 例 17 = 13 + 3 + 1 看上去是对的,怎么证明呢? 首先假如每一个 ...

  4. 【逆向&编程实战】Metasploit安卓载荷运行流程分析_复现meterpreter模块接管shell

    /QQ:3496925334 作者:MG193.7 CNBLOG博客号:ALDYS4 未经许可,禁止转载/ 关于metasploit的安卓模块,前几次的博客我已经写了相应的分析和工具 [Android ...

  5. 合宙Luat直播间即将开启,你揭开行业奥秘,让你快人一步。

    嗨~刚陪你们过儿童节 和你们一起成长的合宙Luat 又有新计划 -- 合宙Luat官方直播即将开启 - 敬请关注 - - 官方直播什么内容 - 可能是合宙研发动态 可能是新品发布资讯 可能是行业大咖分 ...

  6. 如何使用 jest 和 lint-staged 只检测发生改动的文件

    我们现在在推进 EPC 的过程中,单元测试是必备的技能,在本地的 Git commit 之前进行单测非常有必要,总不能把所有的单测的压力都放在流水线上. 毕竟在流水线运行单测的成本还是挺高的,从 pu ...

  7. 关于MySql数据库误操作数据找回的办法

    先讲个事,前段时间,系统长时间不用的一个功能被开放出来了,想当然的我没有在测试平台上测试,直接操作了正式系统(的确是我不严谨),导致好多数据异常,页面展示错乱了.于是我想到的第一个就是进行备份还原.项 ...

  8. 教你用python搭建一个「生活常识解答」机器人

    今天教大家如何用Python爬虫去搭建一个「生活常识解答」机器人. 思路:这个机器人主要是依托于"阿里达摩院发布的语言模型PLUG",通过爬虫的方式,发送post请求(提问),然后 ...

  9. pod生命周期

    Pod生命周期 我们一般将pod对象从创建至终这段时间范围成为pod的生命周期,它主要包含以下的过程: pod创建过程 运行初始化容器(init container)过程 运行主容器(main con ...

  10. Jquery 插件 chosen_v1.8.7 下拉复选框带搜索功能

    地址:https://harvesthq.github.io/chosen/ 效果: 因为只需要这个功能,就只研究这个功能了,代码: <!doctype html> <html la ...