【Spark篇】---Spark中内存管理和Shuffle参数调优
一、前述
Spark内存管理
Spark执行应用程序时,Spark集群会启动Driver和Executor两种JVM进程,Driver负责创建SparkContext上下文,提交任务,task的分发等。Executor负责task的计算任务,并将结果返回给Driver。同时需要为需要持久化的RDD提供储存。Driver端的内存管理比较简单,这里所说的Spark内存管理针对Executor端的内存管理。
Spark内存管理分为静态内存管理和统一内存管理,Spark1.6之前使用的是静态内存管理,Spark1.6之后引入了统一内存管理。
静态内存管理中存储内存、执行内存和其他内存的大小在 Spark 应用程序运行期间均为固定的,但用户可以应用程序启动前进行配置。
统一内存管理与静态内存管理的区别在于储存内存和执行内存共享同一块空间,可以互相借用对方的空间。
Spark1.6以上版本默认使用的是统一内存管理,可以通过参数spark.memory.useLegacyMode 设置为true(默认为false)使用静态内存管理。
二、具体细节
1、静态内存管理分布图
2、统一内存管理分布图
3、reduce 中OOM如何处理?
拉取数据的时候一次都放不下,放下的话可以溢写磁盘
1) 减少每次拉取的数据量
2) 提高shuffle聚合的内存比例
3) 提高Excutor的总内存
4、Shuffle调优
spark.shuffle.file.buffer
默认值:32k
参数说明:该参数用于设置shuffle write task的BufferedOutputStream的buffer缓冲大小。将数据写到磁盘文件之前,会先写入buffer缓冲中,待缓冲写满之后,才会溢写到磁盘。
调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如64k,一定是成倍的增加),从而减少shuffle write过程中溢写磁盘文件的次数,也就可以减少磁盘IO次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。
spark.reducer.maxSizeInFlight
默认值:48m
参数说明:该参数用于设置shuffle read task的buffer缓冲大小,而这个buffer缓冲决定了每次能够拉取多少数据。
调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如96m),从而减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。
spark.shuffle.io.maxRetries
默认值:3
参数说明:shuffle read task从shuffle write task所在节点拉取属于自己的数据时,如果因为网络异常导致拉取失败,是会自动进行重试的。该参数就代表了可以重试的最大次数。如果在指定次数之内拉取还是没有成功,就可能会导致作业执行失败。
调优建议:对于那些包含了特别耗时的shuffle操作的作业,建议增加重试最大次数(比如60次),以避免由于JVM的full gc或者网络不稳定等因素导致的数据拉取失败。在实践中发现,对于针对超大数据量(数十亿~上百亿)的shuffle过程,调节该参数可以大幅度提升稳定性。
shuffle file not find taskScheduler不负责重试task,由DAGScheduler负责重试stage
spark.shuffle.io.retryWait
默认值:5s
参数说明:具体解释同上,该参数代表了每次重试拉取数据的等待间隔,默认是5s。
调优建议:建议加大间隔时长(比如60s),以增加shuffle操作的稳定性。
spark.shuffle.memoryFraction
默认值:0.2
参数说明:该参数代表了Executor内存中,分配给shuffle read task进行聚合操作的内存比例,默认是20%。
调优建议:在资源参数调优中讲解过这个参数。如果内存充足,而且很少使用持久化操作,建议调高这个比例,给shuffle read的聚合操作更多内存,以避免由于内存不足导致聚合过程中频繁读写磁盘。在实践中发现,合理调节该参数可以将性能提升10%左右。
spark.shuffle.manager
默认值:sort|hash
参数说明:该参数用于设置ShuffleManager的类型。Spark 1.5以后,有三个可选项:hash、sort和tungsten-sort。HashShuffleManager是Spark 1.2以前的默认选项,但是Spark 1.2以及之后的版本默认都是SortShuffleManager了。tungsten-sort与sort类似,但是使用了tungsten计划中的堆外内存管理机制,内存使用效率更高。
调优建议:由于SortShuffleManager默认会对数据进行排序,因此如果你的业务逻辑中需要该排序机制的话,则使用默认的SortShuffleManager就可以;而如果你的业务逻辑不需要对数据进行排序,那么建议参考后面的几个参数调优,通过bypass机制或优化的HashShuffleManager来避免排序操作,同时提供较好的磁盘读写性能。这里要注意的是,tungsten-sort要慎用,因为之前发现了一些相应的bug。
spark.shuffle.sort.bypassMergeThreshold
默认值:200
参数说明:当ShuffleManager为SortShuffleManager时,如果shuffle read task的数量小于这个阈值(默认是200),则shuffle write过程中不会进行排序操作,而是直接按照未经优化的HashShuffleManager的方式去写数据,但是最后会将每个task产生的所有临时磁盘文件都合并成一个文件,并会创建单独的索引文件。
调优建议:当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些,大于shuffle read task的数量。那么此时就会自动启用bypass机制,map-side就不会进行排序了,减少了排序的性能开销。但是这种方式下,依然会产生大量的磁盘文件,因此shuffle write性能有待提高。
spark.shuffle.consolidateFiles
默认值:false
参数说明:如果使用HashShuffleManager,该参数有效。如果设置为true,那么就会开启consolidate机制,会大幅度合并shuffle write的输出文件,对于shuffle read task数量特别多的情况下,这种方法可以极大地减少磁盘IO开销,提升性能。
调优建议:如果的确不需要SortShuffleManager的排序机制,那么除了使用bypass机制,还可以尝试将spark.shffle.manager参数手动指定为hash,使用HashShuffleManager,同时开启consolidate机制。在实践中尝试过,发现其性能比开启了bypass机制的SortShuffleManager要高出10%~30%。
5、Shuffle调优设置
SparkShuffle调优配置项如何使用?
1) 在代码中,不推荐使用,硬编码。
new SparkConf().set(“spark.shuffle.file.buffer”,”64”)
2) 在提交spark任务的时候,推荐使用。
spark-submit --conf spark.shuffle.file.buffer=64 –conf ….
3) 在conf下的spark-default.conf配置文件中,不推荐,因为是写死后所有应用程序都要用。
【Spark篇】---Spark中内存管理和Shuffle参数调优的更多相关文章
- Spark Shuffle原理、Shuffle操作问题解决和参数调优
摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuff ...
- spark 资源参数调优
资源参数调优 了解完了Spark作业运行的基本原理之后,对资源相关的参数就容易理解了.所谓的Spark资源参数调优,其实主要就是对Spark运行过程中各个使用资源的地方,通过调节各种参数,来优化资源使 ...
- spark参数调优
摘要 1.num-executors 2.executor-memory 3.executor-cores 4.driver-memory 5.spark.default.parallelism 6. ...
- spark submit参数调优
在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置 ...
- 【Spark调优】Shuffle原理理解与参数调优
[生产实践经验] 生产实践中的切身体会是:影响Spark性能的大BOSS就是shuffle,抓住并解决shuffle这个主要原因,事半功倍. [Shuffle原理学习笔记] 1.未经优化的HashSh ...
- 【Spark调优】内存模型与参数调优
[Spark内存模型] Spark在一个executor中的内存分为3块:storage内存.execution内存.other内存. 1. storage内存:存储broadcast,cache,p ...
- Spark学习之路 (十)SparkCore的调优之Shuffle调优
摘抄自https://tech.meituan.com/spark-tuning-pro.html 一.概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘I ...
- Spark学习之路 (十)SparkCore的调优之Shuffle调优[转]
概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行调优 ...
- Spark面试题(八)——Spark的Shuffle配置调优
Spark系列面试题 Spark面试题(一) Spark面试题(二) Spark面试题(三) Spark面试题(四) Spark面试题(五)--数据倾斜调优 Spark面试题(六)--Spark资源调 ...
随机推荐
- sqlserver给用户配置存储过程查看权限
对应的数据库->安全性->用户名右键属性-->安全对象-->指定所有对象-->选择服务器,里边有一个 查看定义(view any definition) 选项,勾上.
- 这篇通俗实用的Vlookup函数教程,5分钟就可以包你一学就会
如何利用Vlookup函数获取学号中的班级信息.换言之,咱们源数据中放着姓名性别学号班级等信息,而在另一张表格中一定有学号信息,但其他信息就未必有,这需要我们将缺失的信息自动同步过去.使用vlooku ...
- 用Count() > 0 来判断集合非空的问题
Linq 出现之前,我们通常使用下面的方式来判断集合是否非空,即集合包含元素: ]; ; var list = new List<string>(); ; var collection = ...
- 记忆(缓存)函数返回值:Python 实现
对于经常调用的函数,特别是递归函数或计算密集的函数,记忆(缓存)返回值可以显着提高性能.而在 Python 里,可以使用字典来完成. 例子:斐波那契数列 下面这个计算斐波那契数列的函数 fib() 具 ...
- HTTP请求头中各字段解释
Accept : 浏览器(或者其他基于HTTP的客户端程序)可以接收的内容类型(Content-types),例如 Accept: text/plain Accept-Charset:浏览器能识别的字 ...
- 结对开发项目--石家庄地铁web版
一.功能要求 1.数据库设计:将石家庄地铁线路图的各个线路,各个站点,换乘信息等用数据库的形式保存起来,应该保存的信息有 {线路号,线路的各个站名,车站的换乘信息}. 2.站点查询:用户可以输入任一一 ...
- Codeforces 938D. Buy a Ticket (最短路+建图)
<题目链接> 题目大意: 有n座城市,每一个城市都有一个听演唱会的价格,这n座城市由m条无向边连接,每天变都有其对应的边权.现在要求出每个城市的人,看一场演唱会的最小价值(总共花费的价值= ...
- AspNetCore.AsyncInitialization库源码分析
AspNetCore.AsyncInitialization 这个库是用来实现在asp.net core应用程序启动时异步执行异步任务.可参考:如何在ASP.NET Core程序启动时运行异步任务(2 ...
- 展开被 SpringBoot 玩的日子 《 三 》 整合Redis
SpringBoot对常用的数据库支持外,对NoSQL 数据库也进行了封装自动化. redis介绍 Redis是目前业界使用最广泛的内存数据存储.相比memcached,Redis支持更丰富的数据结构 ...
- APM和PIX飞控日志分析入门贴
我们在飞行中,经常会碰到各种各样的问题,经常有模友很纳闷,为什么我的飞机会这样那样的问题,为什么我的飞机会炸机,各种问题得不到答案是一件非常不爽的问题,在APM和PIX飞控中,都有记录我们整个飞行过程 ...