GMA Round 1 数列求和(Hard)
数列求和(Hard)
在数列{$a_n$}中,$a_1=-\frac{1}{4}$,$\frac{1}{a_{n+1}}+\frac{1}{a_n}=\begin{cases}-3(n为偶数)\\3(n为奇数) \end{cases}$
当n趋近于正无穷时,求{$a_n$}的前n项和。
由泰勒公式得
$$\frac{1}{1+x^3}=1-x^3+x^6-x^9+……+(-1)^nx^{3n}+……(x\in(-1,1))$$
对两端从0到t进行积分得
$$\int_{0}^{t}\frac{1}{1+x^3}dx$$ $$=\int_{0}^{t}dx-\int_{0}^{t}x^3dx+……$$ $$=t-\frac{t^4}{4}+\frac{t^7}{7}-……+(-1)^n\frac{t^{3n+1}}{3^n+1}+……$$
又
$$\int_{0}^{t}dx=\frac{1}{3}ln\frac{t+1}{\sqrt{t^2-t+1}}+\frac{\sqrt{3}}{3}arctan\frac{2\sqrt{3}t-\sqrt{3}}{3}+\frac{\sqrt{3}}{18}\pi$$
由莱布尼茨审敛法知$\sum_{n=0}^{\infty}(-1)^n\frac{1}{3n+1}$收敛
令t=1得
$$\sum_{n=1}^{\infty}a_i=\sum_{n=1}^{\infty}(-1)^n\frac{1}{3n+1}=\frac{1}{3}ln2+\frac{\sqrt{3}}{9}\pi-1$$
定位:困难题、超纲题
GMA Round 1 数列求和(Hard)的更多相关文章
- GMA Round 1 数列与方程
传送门 数列与方程 首项为1,各项均大于0的数列{$a_n$}的前n项和$S_n$满足对于任意正整数n:$S_{n+1}^2-2*S_{n+1}*S_{n}-\sqrt{2}*S_n-1=0$,求$a ...
- GMA Round 1 数列求单项
传送门 数列求单项 在数列{$a_n$}中,$a_1=-\frac{1}{4}$,$\frac{1}{a_{n+1}}+\frac{1}{a_n}=\begin{cases}-3(n为偶数)\\3(n ...
- 李洪强漫谈iOS开发[C语言-047]-数列求和
// // main.c // 53 - 数列求和 - 李洪强 // // Created by vic fan on 16/10/15. // Copyright © 2016年 李洪强. ...
- 40. 特殊a串数列求和
特殊a串数列求和 #include <stdio.h> int main() { int i, a, n, item, sum, temp; while (scanf("%d % ...
- GMA Round 1
学弟说我好久没更blog了. 因为自己最近其实没干什么. 所以来搬运一下GMA Round 1 的比赛内容吧,blog访问量.网站流量一举两得. 链接:https://enceladus.cf/con ...
- 数列求和 Exercise06_13
/** * @author 冰樱梦 * 时间:2018年下半年 * 题目:数列求和 * */ public class Exercise06_13 { public static void main( ...
- C语言程序设计100例之(23):数列求和
例23 数列求和 问题描述 已知某数列前两项为2和3,其后继项根据前面最后两项的乘积,按下列规则生成: ① 若乘积为一位数,则该乘积即为数列的后继项: ② 若乘积为二位数,则该乘积的十位上的数字和个 ...
- LibreOJ #528. 「LibreOJ β Round #4」求和
二次联通门 : LibreOJ #528. 「LibreOJ β Round #4」求和 /* LibreOJ #528. 「LibreOJ β Round #4」求和 题目要求的是有多少对数满足他们 ...
- 解题报告:luogu P5745 【深基附B例】数列求和
题目链接:P5745 [深基附B例]数列求和 现在想说:\(O(N)\)的题要不怎么也想不出来,要不灵光乍现,就像这道题. 我们维护一个类似单调队列的加法单调队列: 若相加大于此数,就将队尾元素弹出, ...
随机推荐
- 盘点那些Vs中常用到的Tab快捷编码
1.快速声明for循环:for+Tab 2.快速声明Foreach遍历:foreach+Tab 3.快速定义属性:prop+Tab 4.
- RxJava2.0相关教程
这可能是最好的RxJava 2.x 教程(完结版) https://www.jianshu.com/p/0cd258eecf60 RxJava2.0——从放弃到入门 https://www.jians ...
- [转]centos安装autossh
centos安装autossh $ sudo yum install wget gcc make$ wget http://www.harding.motd.ca/autossh/autossh-1. ...
- 【前端基础系列】理解bind方法使用与实现
方法描述 bind()方法创建一个新函数,当被调用时,将其this关键字设置为提供的值. 语法说明 fn.bind(thisArg,arg1,arg2,..) 参数说明 thisArg:当绑定函数被调 ...
- Json常用组件
Json2.js 开发者:json官网:http://www.json.org/. 适用环境:用于在不支持JSON对象的浏览器(通常是国内使用IE内核的第三方浏览器)下使用.json2.js提供了 ...
- Android ADB命令教程二——ADB命令详解
Android ADB命令教程二——ADB命令详解 转载▼ 原文链接:http://www.tbk.ren/article/249.html 我们使用 adb -h 来看看,adb命令里面 ...
- Codechef STMINCUT S-T Mincut (CodeChef May Challenge 2018) kruskal
原文链接http://www.cnblogs.com/zhouzhendong/p/9010945.html 题目传送门 - Codechef STMINCUT 题意 在一个有边权的无向图中,我们定义 ...
- 2n的 位数
len=())+,(2n−1同样适用)
- Count the string kmp
问题描述众所周知,aekdycoin擅长字符串问题和数论问题.当给定一个字符串s时,我们可以写下该字符串的所有非空前缀.例如:S:“ABAB”前缀是:“A”.“AB”.“ABA”.“ABAB”对于每个 ...
- Kafka概述及安装部署
一.Kafka概述 1.Kafka是一个分布式流媒体平台,它有三个关键功能: (1)发布和订阅记录流,类似于消息队列或企业消息传递系统: (2)以容错的持久方式存储记录流: (3)记录发送时处理流. ...