杭电 2639 Bone Collector II【01背包第k优解】
解题思路:对于01背包的状态转移方程式f[v]=max(f[v],f[v-c[i]+w[i]]);其实01背包记录了每一个装法的背包值,但是在01背包中我们通常求的是最优解,
即为取的是f[v],f[v-c[i]]+w[i]中的最大值,但是现在要求第k大的值,我们就分别用两个数组保留f[v]的前k个值,f[v-c[i]]+w[i]的前k个值,再将这两个数组合并,取第k名。
即f的数组会增加一维。
http://blog.csdn.net/lulipeng_cpp/article/details/7584981这个讲得很详细
反思:01背包没有理解,即分别用两个数组去存放f[v],f[v-c[i]]+w[i]的前k个值时,这k个值就是有序的,所以合并起来也是有序的,至于为什么是有序的,可以再看这个状态转移方程
for(i=1;i<=n;i++)
{
for(j=v;j>=c[i];j--)
f[v]=max(f[v],f[v-c[i]+w[i]]);//此时包的价值取决于上一个包有没有放进去的决策,不管那个包有没有放进去,当前状态的f[v]都是这两个值的最大值,所以
从1--v,f[v]是递增的。
}
用一个简单的例子来模拟一下
有一个容量为10的包,现在有3件物品,
重量 价值
3 4
4 5
5 6
f[j] | j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
i | 1 | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
2 | 0 | 0 | 4 | 5 | 5 | 5 | 9 | 9 | 9 | 9 | |
3 | 0 | 0 | 4 | 5 | 6 | 6 | 6 | 6 | 11 | 11 | |
可以看到当j的取值从1到n的时候,f[v]的值是递增的,
Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602
Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.
If the total number of different values is less than K,just ouput 0.
5 10 2
1 2 3 4 5
5 4 3 2 1
5 10 12
1 2 3 4 5
5 4 3 2 1
5 10 16
1 2 3 4 5
5 4 3 2 1
#include<stdio.h>
int c[1010],w[1010];
int main()
{
int ncase,n,v,k,i,j,x,y,z,t;
scanf("%d",&ncase);
while(ncase--)
{
int f[1010][50]={0};
int a[50],b[50];
scanf("%d %d %d",&n,&v,&k);
for(i=1;i<=n;i++) scanf("%d",&w[i]);
for(i=1;i<=n;i++) scanf("%d",&c[i]); for(i=1;i<=n;i++)
{
for(j=v;j>=c[i];j--)
{
for(t=1;t<=k;t++)
{
a[t]=f[j-c[i]][t]+w[i];
b[t]=f[j][t];
}
x=y=z=1;
a[t]=b[t]=-1;
while(z<=k&&(x<=k||y<=k))
{
if(a[x]>b[y])
f[j][z]=a[x++];
else
f[j][z]=b[y++]; if(f[j][z]!=f[j][z-1])
z++;
}
}
}
printf("%d\n",f[v][k]);
}
}
杭电 2639 Bone Collector II【01背包第k优解】的更多相关文章
- HDU - 2639 Bone Collector II (01背包第k大解)
分析 \(dp[i][j][k]\)为枚举到前i个物品,容量为j的第k大解.则每一次状态转移都要对所有解进行排序选取前第k大的解.用两个数组\(vz1[],vz2[]\)分别记录所有的选择情况,并选择 ...
- HDU 2639 Bone Collector II(01背包变形【第K大最优解】)
Bone Collector II Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- HDU2639Bone Collector II[01背包第k优值]
Bone Collector II Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- HDU 2639 Bone Collector II (01背包,第k解)
题意: 数据是常规的01背包,但是求的不是最大容量限制下的最佳解,而是第k佳解. 思路: 有两种解法: 1)网上普遍用的O(V*K*N). 2)先用常规01背包的方法求出背包容量限制下能装的最大价值m ...
- HDU 2639 Bone Collector II(01背包变型)
此题就是在01背包问题的基础上求所能获得的第K大的价值. 详细做法是加一维去推当前背包容量第0到K个价值,而这些价值则是由dp[j-w[ i ] ][0到k]和dp[ j ][0到k]得到的,事实上就 ...
- 杭电2602 Bone Collector 【01背包】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 解题思路:给出一个容量为V的包,以及n个物品,每一个物品的耗费的费用记作c[i](即该物品的体积 ...
- HDU 2639 (01背包第k优解)
/* 01背包第k优解问题 f[i][j][k] 前i个物品体积为j的第k优解 对于每次的ij状态 记下之前的两种状态 i-1 j-w[i] (选i) i-1 j (不选i) 分别k个 然后归并排序并 ...
- (01背包 第k优解) Bone Collector II(hdu 2639)
http://acm.hdu.edu.cn/showproblem.php?pid=2639 Problem Description The title of this problem i ...
- HDU 3639 Bone Collector II(01背包第K优解)
Bone Collector II Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
随机推荐
- javase 异常处理
1.简述什么是异常.异常的继承体系? 异常就是java代码块在运行时出现的错误,有编译错误和运行错误, Throwable是所有异常的父类它包含了error和Exception两个子类. 其中e ...
- 洛谷P2827 蚯蚓 队列 + 观察
我们不难发现先被切开的两半一定比后被切开的两半大,这样就天然的生成了队列的单调性,就可以省去一个log.所以,我们开三个队列,分别为origin,big,smallorigin, big, small ...
- 小白学习Spark系列二:spark应用打包傻瓜式教程(IntelliJ+maven 和 pycharm+jar)
在做spark项目时,我们常常面临如何在本地将其打包,上传至装有spark服务器上运行的问题.下面是我在项目中尝试的两种方案,也踩了不少坑,两者相比,方案一比较简单,本博客提供的jar包适用于spar ...
- Python笔记15------图像
主要三个库:Pilow(PIL).OpenCV.Skimage(针对scipy,用的少) 小例子:给一张图片的左上角粘贴一个相同的图片(缩略并旋转了45度) from PIL import Image ...
- Project Euler 41 Pandigital prime( 米勒测试 + 生成全排列 )
题意:如果一个n位数恰好使用了1至n每个数字各一次,我们就称其为全数字的.例如,2143就是一个4位全数字数,同时它恰好也是一个素数. 最大的全数字的素数是多少? 思路: 最大全排列素数可以从 n = ...
- AES ECB PKCS5/PKCS7 加解密 python实现 支持中文
目录 ECB模式介绍 pkcs5padding和pkcs7padding的区别 python实现 注意事项 ECB模式介绍 电码本模式(Electronic Codebook Book (ECB) 这 ...
- 邓_ Php·面试
1:PHP的意思,它能干什么? PHP是一个基于服务端来创建动态网站的脚本语言,您可以用PHP和HTML生成网站主页,英文的全称(Professional Home Pages)1.Web ...
- Spring Boot 第一个demo
Sring boot 一直没有使用过,跳槽来到新公司,暂时没有事情就学习一下. Spring boot 这里采用的是maven 来创建的 maven项目的pom.xml 文件 <?xml v ...
- Android设计模式(三)--装饰模式
1.定义: Attach additional responsibilities to an object dynamically keeping the same interface. Decoa ...
- wifi共享精灵2014.04.25.001已经更新,wifi热点中文名走起!
五一回来后,有个惊喜,wifi共享精灵有了最新动向.不晓得wifi共享精灵是啥的朋友,我来解释下,它就相当于一个无线路由器.说起来,Wifi共享精灵正式版2014.04.25.001(http://w ...