解题思路:对于01背包的状态转移方程式f[v]=max(f[v],f[v-c[i]+w[i]]);其实01背包记录了每一个装法的背包值,但是在01背包中我们通常求的是最优解,

即为取的是f[v],f[v-c[i]]+w[i]中的最大值,但是现在要求第k大的值,我们就分别用两个数组保留f[v]的前k个值,f[v-c[i]]+w[i]的前k个值,再将这两个数组合并,取第k名。

即f的数组会增加一维。

http://blog.csdn.net/lulipeng_cpp/article/details/7584981这个讲得很详细

反思:01背包没有理解,即分别用两个数组去存放f[v],f[v-c[i]]+w[i]的前k个值时,这k个值就是有序的,所以合并起来也是有序的,至于为什么是有序的,可以再看这个状态转移方程

for(i=1;i<=n;i++)

{

for(j=v;j>=c[i];j--)

f[v]=max(f[v],f[v-c[i]+w[i]]);//此时包的价值取决于上一个包有没有放进去的决策,不管那个包有没有放进去,当前状态的f[v]都是这两个值的最大值,所以

从1--v,f[v]是递增的。

}

用一个简单的例子来模拟一下

有一个容量为10的包,现在有3件物品,

重量   价值

3      4

4      5

5      6

f[j] j 1 2 3 4 5 6 7 8 9 10
i 1 0 0 4 4 4 4 4 4 4 4
  2 0 0 4 5 5 5 9 9 9 9
  3 0 0 4 5 6 6 6 6 11 11
                       

可以看到当j的取值从1到n的时候,f[v]的值是递增的,

Problem Description
The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:
Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602
Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.
If the total number of different values is less than K,just ouput 0.
 
Input
The first line contain a integer T , the number of cases. Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
 
Output
One integer per line representing the K-th maximum of the total value (this number will be less than 231).
 
Sample Input
3
5 10 2
1 2 3 4 5
5 4 3 2 1
5 10 12
1 2 3 4 5
5 4 3 2 1
5 10 16
1 2 3 4 5
5 4 3 2 1
 
#include<stdio.h>
int c[1010],w[1010];
int main()
{
int ncase,n,v,k,i,j,x,y,z,t;
scanf("%d",&ncase);
while(ncase--)
{
int f[1010][50]={0};
int a[50],b[50];
scanf("%d %d %d",&n,&v,&k);
for(i=1;i<=n;i++) scanf("%d",&w[i]);
for(i=1;i<=n;i++) scanf("%d",&c[i]); for(i=1;i<=n;i++)
{
for(j=v;j>=c[i];j--)
{
for(t=1;t<=k;t++)
{
a[t]=f[j-c[i]][t]+w[i];
b[t]=f[j][t];
}
x=y=z=1;
a[t]=b[t]=-1;
while(z<=k&&(x<=k||y<=k))
{
if(a[x]>b[y])
f[j][z]=a[x++];
else
f[j][z]=b[y++]; if(f[j][z]!=f[j][z-1])
z++;
}
}
}
printf("%d\n",f[v][k]);
}
}

  

杭电 2639 Bone Collector II【01背包第k优解】的更多相关文章

  1. HDU - 2639 Bone Collector II (01背包第k大解)

    分析 \(dp[i][j][k]\)为枚举到前i个物品,容量为j的第k大解.则每一次状态转移都要对所有解进行排序选取前第k大的解.用两个数组\(vz1[],vz2[]\)分别记录所有的选择情况,并选择 ...

  2. HDU 2639 Bone Collector II(01背包变形【第K大最优解】)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. HDU2639Bone Collector II[01背包第k优值]

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  4. HDU 2639 Bone Collector II (01背包,第k解)

    题意: 数据是常规的01背包,但是求的不是最大容量限制下的最佳解,而是第k佳解. 思路: 有两种解法: 1)网上普遍用的O(V*K*N). 2)先用常规01背包的方法求出背包容量限制下能装的最大价值m ...

  5. HDU 2639 Bone Collector II(01背包变型)

    此题就是在01背包问题的基础上求所能获得的第K大的价值. 详细做法是加一维去推当前背包容量第0到K个价值,而这些价值则是由dp[j-w[ i ] ][0到k]和dp[ j ][0到k]得到的,事实上就 ...

  6. 杭电2602 Bone Collector 【01背包】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 解题思路:给出一个容量为V的包,以及n个物品,每一个物品的耗费的费用记作c[i](即该物品的体积 ...

  7. HDU 2639 (01背包第k优解)

    /* 01背包第k优解问题 f[i][j][k] 前i个物品体积为j的第k优解 对于每次的ij状态 记下之前的两种状态 i-1 j-w[i] (选i) i-1 j (不选i) 分别k个 然后归并排序并 ...

  8. (01背包 第k优解) Bone Collector II(hdu 2639)

    http://acm.hdu.edu.cn/showproblem.php?pid=2639       Problem Description The title of this problem i ...

  9. HDU 3639 Bone Collector II(01背包第K优解)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

随机推荐

  1. JS 垃圾回收机制

    [转自]:https://segmentfault.com/a/1190000018605776 垃圾回收 JavaScript 中的内存管理是自动执行的,而且是不可见的.我们创建基本类型.对象.函数 ...

  2. Codeforces Round #471 (Div. 2)B. Not simply beatiful strings

    Let's call a string adorable if its letters can be realigned in such a way that they form two conseq ...

  3. 批量删除.svn目录

    find . -type d -name ".svn"|xargs rm -rf find . -type d -iname ".svn" -exec rm - ...

  4. leetCode笔记--(1)

    陪朋友刷题,记录下. 1.Evaluate the value of an arithmetic expression in Reverse Polish Notation.Valid operato ...

  5. Problem 14

    Problem 14 # Problem_14.py """ The following iterative sequence is defined for the se ...

  6. VirtualBox安装kali linux过程及安装后无法全屏问题解决方法(2)

    ? 1   安装说完了,现在来看看怎么全屏吧,虚拟机无法全屏跟咸鱼有什么区别... 首先打开vbox,选择设备(Device)选项里面最下面安装增强工具那个选项(insert guest additi ...

  7. Struts2校验

    struts2校验有两种实现方法: 手工编写代码实现(基本验证) //login.jsp <font color="red"><s:fielderror/> ...

  8. 机房-动环-江森ODS系统

    优势: 标准的BACnet系统平台 开放的集成特性 支持Desktop and Server平台 支持多达100个NxE 支持无线应用,可以手机访问 DCIM---数据中心基础架构管理平台介绍 不同于 ...

  9. BP网络中的反向传播

    本文的主要参考:How the backpropagation algorithm works 下面是BP网络的参数结构示意图 首先定义第l层网络第j个神经元的输出(activation) 为了表示简 ...

  10. 在IntelliJ IDEA中创建Web项目

    在IntelliJ IDEA中创建Web项目 在IntelliJ IDEA中创建Web项目1,创建Maven WebProject选择File>New>Project 出现New Proj ...