杭电 2639 Bone Collector II【01背包第k优解】
解题思路:对于01背包的状态转移方程式f[v]=max(f[v],f[v-c[i]+w[i]]);其实01背包记录了每一个装法的背包值,但是在01背包中我们通常求的是最优解,
即为取的是f[v],f[v-c[i]]+w[i]中的最大值,但是现在要求第k大的值,我们就分别用两个数组保留f[v]的前k个值,f[v-c[i]]+w[i]的前k个值,再将这两个数组合并,取第k名。
即f的数组会增加一维。
http://blog.csdn.net/lulipeng_cpp/article/details/7584981这个讲得很详细
反思:01背包没有理解,即分别用两个数组去存放f[v],f[v-c[i]]+w[i]的前k个值时,这k个值就是有序的,所以合并起来也是有序的,至于为什么是有序的,可以再看这个状态转移方程
for(i=1;i<=n;i++)
{
for(j=v;j>=c[i];j--)
f[v]=max(f[v],f[v-c[i]+w[i]]);//此时包的价值取决于上一个包有没有放进去的决策,不管那个包有没有放进去,当前状态的f[v]都是这两个值的最大值,所以
从1--v,f[v]是递增的。
}
用一个简单的例子来模拟一下
有一个容量为10的包,现在有3件物品,
重量 价值
3 4
4 5
5 6
f[j] | j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
i | 1 | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
2 | 0 | 0 | 4 | 5 | 5 | 5 | 9 | 9 | 9 | 9 | |
3 | 0 | 0 | 4 | 5 | 6 | 6 | 6 | 6 | 11 | 11 | |
可以看到当j的取值从1到n的时候,f[v]的值是递增的,
Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602
Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.
If the total number of different values is less than K,just ouput 0.
5 10 2
1 2 3 4 5
5 4 3 2 1
5 10 12
1 2 3 4 5
5 4 3 2 1
5 10 16
1 2 3 4 5
5 4 3 2 1
#include<stdio.h>
int c[1010],w[1010];
int main()
{
int ncase,n,v,k,i,j,x,y,z,t;
scanf("%d",&ncase);
while(ncase--)
{
int f[1010][50]={0};
int a[50],b[50];
scanf("%d %d %d",&n,&v,&k);
for(i=1;i<=n;i++) scanf("%d",&w[i]);
for(i=1;i<=n;i++) scanf("%d",&c[i]); for(i=1;i<=n;i++)
{
for(j=v;j>=c[i];j--)
{
for(t=1;t<=k;t++)
{
a[t]=f[j-c[i]][t]+w[i];
b[t]=f[j][t];
}
x=y=z=1;
a[t]=b[t]=-1;
while(z<=k&&(x<=k||y<=k))
{
if(a[x]>b[y])
f[j][z]=a[x++];
else
f[j][z]=b[y++]; if(f[j][z]!=f[j][z-1])
z++;
}
}
}
printf("%d\n",f[v][k]);
}
}
杭电 2639 Bone Collector II【01背包第k优解】的更多相关文章
- HDU - 2639 Bone Collector II (01背包第k大解)
分析 \(dp[i][j][k]\)为枚举到前i个物品,容量为j的第k大解.则每一次状态转移都要对所有解进行排序选取前第k大的解.用两个数组\(vz1[],vz2[]\)分别记录所有的选择情况,并选择 ...
- HDU 2639 Bone Collector II(01背包变形【第K大最优解】)
Bone Collector II Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- HDU2639Bone Collector II[01背包第k优值]
Bone Collector II Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- HDU 2639 Bone Collector II (01背包,第k解)
题意: 数据是常规的01背包,但是求的不是最大容量限制下的最佳解,而是第k佳解. 思路: 有两种解法: 1)网上普遍用的O(V*K*N). 2)先用常规01背包的方法求出背包容量限制下能装的最大价值m ...
- HDU 2639 Bone Collector II(01背包变型)
此题就是在01背包问题的基础上求所能获得的第K大的价值. 详细做法是加一维去推当前背包容量第0到K个价值,而这些价值则是由dp[j-w[ i ] ][0到k]和dp[ j ][0到k]得到的,事实上就 ...
- 杭电2602 Bone Collector 【01背包】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 解题思路:给出一个容量为V的包,以及n个物品,每一个物品的耗费的费用记作c[i](即该物品的体积 ...
- HDU 2639 (01背包第k优解)
/* 01背包第k优解问题 f[i][j][k] 前i个物品体积为j的第k优解 对于每次的ij状态 记下之前的两种状态 i-1 j-w[i] (选i) i-1 j (不选i) 分别k个 然后归并排序并 ...
- (01背包 第k优解) Bone Collector II(hdu 2639)
http://acm.hdu.edu.cn/showproblem.php?pid=2639 Problem Description The title of this problem i ...
- HDU 3639 Bone Collector II(01背包第K优解)
Bone Collector II Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
随机推荐
- promise待看文档备份
http://swift.gg/2017/03/27/promises-in-swift/ http://www.cnblogs.com/feng9exe/p/9043715.html https:/ ...
- ZBrush中如何将一个模型应用在不同的图层
我们经常会使用ZBrush®中的插入笔刷来实现快速建模,或者使用Insert笔刷创建人物四肢,那么在使用这些笔刷时,它默认是和所接触模型同在一个Subtool,如果您需要不同的材质或者雕刻手法,那么就 ...
- PhotoZoom Pro 7 支持哪些图像格式?
PhotoZoom是一款新颖的.技术上具有革命性的对数码图片无损放大的工具.为设计工作者提供了优良的解决方案,可快速渲染出完美的放大照片,呈现无与伦比的画质效果.将因其应用的广泛性,所以对图像文件的支 ...
- <td colspan="6"></td>代表这个td占6个td的位置
<td colspan="6"><span class="order-time">2017-10-11 14:55:23</spa ...
- python编写简单的html登陆页面(1)
1 html 打开调式效果如下 2 用python后台编写 # coding:utf-8# 从同一个位置导入多个工具,# 这些工具之间可以用逗号隔开,同时导入# render_template渲染 ...
- 从U盘安装CentOS7.3教程(转载)
0.准备工作: 一台没系统的普通电脑u盘一个(大于1G,最小安装的话不超过1G,根据选择系统大小匹配U盘即可) CentOS7.3 iso文件一个UltraISO工具 1.制作U盘 ①使用UltraI ...
- 【Java编程】volatile和transient关键字的理解
理解volatile volatile是java提供的一种轻量级的同步机制,所谓轻量级,是相对于synchronized(重量级锁,开销比较大)而言的. 根据java虚拟机的内存模型,我们知道 ...
- python之组合与继承的使用场景
1.什么时候使用类的组合?当类之间有显著的不同,并且较小的类是组成较大类所需要的组件,此时用类的组合较合理:场景:医院是由多个科室组成的,此时我们可以定义不同科室的类,这样医院的类我们可以直接使用各个 ...
- Virtual servers on a Raspberry Pi with the light weight OS virtualization system Docker!
转自:http://www.hyggeit.dk/2014/02/virtual-servers-on-raspberry-pi-with.html Virtual servers on a Rasp ...
- [luogu P2590 ZJOI2008] 树的统计 (树链剖分)
题目描述 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w. 我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u ...