基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题
 收藏
 关注
N元钱换为零钱,有多少不同的换法?币值包括1 2 5分,1 2 5角,1 2 5 10 20 50 100元。

 
例如:5分钱换为零钱,有以下4种换法:
1、5个1分
2、1个2分3个1分
3、2个2分1个1分
4、1个5分
(由于结果可能会很大,输出Mod 10^9 + 7的结果)
Input
输入1个数N,N = 100表示1元钱。(1 <= N <= 100000)
Output
输出Mod 10^9 + 7的结果
Input示例
5
Output示例
4
【代码】:

#include<cstdio>
#include<cstring>
#include<queue>
#include<iostream>
#include<stack>
#include<algorithm>
#define maxn 105
#define maxm 50005
#define INF 0x3f3f3f3f
#define ll long long
#define MOD 1000000007
using namespace std;
/*
每件物品无穷多个!
它的实际意义:依次取出可用硬币集合中的每一种硬币,例如当前取出的硬币为3元硬币,设val(i)为凑成i元的方法数,则val(i)自然要增加val(i-3),因为3元硬币的存在,所有能凑成(i-3)元的方法都可通过增加一枚3元硬币而凑成i元。
*/
int w[]={,,,,,,,,,,,,};
int v[]={,,,,,};
int d[]; int main()
{
int n,c;
scanf("%d",&n);
d[]=;
for(int i=;i<;i++)
for(int j=w[i];j<=n;j++)
d[j]=(d[j]+d[j-w[i]])%MOD;
printf("%d\n",d[n]);
}
/*
dp[i][j]:
1. 保持金额不变, 减少货币种数
2. 保持货币种数,减少金额大小
if(i>=j) dp[i][j] = dp[i][j-1] + dp[i-j][j]
if(i<j) dp[i][j] = dp[i][i];
对于能影响兑换种数多少存在2个变量,
第一个是货币种数,第二个是金额多少, 所以递归向着2个方面进行,
1. 保持金额不变, 减少货币种数
2. 保持货币种数,减少金额大小.
所以形成了2叉树.
这是离散的情况, 在微积分中我们也可以看到例子,
对于有2个变量函数进行微分,做偏微分时,
先保持第一个变量,对第二个变量求导,
再保持第二个变量,对第一个变量求导. dp[i](i为硬币的币值,即 1 <= i <= N) 中 当coins[j]( 1 <= j <= 13)(放进去 + 不放进去)两种场景的和
好比,coins[] = {1, 2, 5} dp[2]有两种方案,
dp[2][0] = dp[1][0] = 1;
dp[2][1] = dp[0][2](直接选择一枚2分硬币的结果) + dp[1][0](2个1分硬币的结果) = 2
dp[2][2] = 0 + dp[2][1] = 2 (因为价值为5的硬币放不进去,所以只能选择不放)
PS: MOD = (10^9 + 7) 每步的结果都要MOD一下 >.<
*/

51nod 1101 换零钱 【完全背包变形/无限件可取】的更多相关文章

  1. 51nod 1101换零钱(背包)

    N元钱换为零钱,有多少不同的换法?币值包括1 2 5分,1 2 5角,1 2 5 10 20 50 100元.   例如:5分钱换为零钱,有以下4种换法: 1.5个1分 2.1个2分3个1分 3.2个 ...

  2. 51nod 1101 换零钱 完全背包的变型 动态规划

    题目: 思路: ;i < ; i++){ for(int j = a[i];j <= n; j++){ dp[j] = (dp[j] + dp[j-a[i]])%mod; } } a[i] ...

  3. 51nod 1101 换零钱 (完全背包)

    N元钱换为零钱,有多少不同的换法?币值包括1 2 5分,1 2 5角,1 2 5 10 20 50 100元. 例如:5分钱换为零钱,有以下4种换法: 1.5个1分 2.1个2分3个1分 3.2个2分 ...

  4. 51nod 1101 换零钱

    基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 N元钱换为零钱,有多少不同的换法?币值包括1 2 5分,1 2 5角,1 2 5 10 20 50 100元.   ...

  5. 51 Nod 1101 换零钱(动态规划好题)

    1101 换零钱  基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 N元钱换为零钱,有多少不同的换法?币值包括1 2 5分,1 2 5角,1 2 5 ...

  6. SDUT3145:Integer division 1(换零钱背包)

    题目:传送门 题目描述 整数划分是一个非常经典的数学问题. 所谓整数划分,是指把一个正整数n写成为n=m1+m2+...+mi的形式,其中mi为正整数,并且1<=mi<=n,此时,{m1, ...

  7. 小P的故事——神奇的换零钱&&人活着系列之平方数

    http://acm.sdut.edu.cn/sdutoj/showproblem.php?pid=2777&cid=1219 这题不会,看了别人的代码 #include <iostre ...

  8. 子集和问题(应用--换零钱)POJ2229:Sumsets

    我一直在纠结换零钱这一类型的题目,今天好好絮叨一下,可以说他是背包的应用,也可以说他是单纯的dp.暂且称他为dp吧. 先上一道模板题目. sdut2777: 小P的故事——神奇的换零钱 题目描述 已知 ...

  9. DP优化与换零钱问题

    1 当贪心不再起效的时候 对于换零钱问题,最简单也是性能最好的方法就是贪心算法.可是贪心算法一定要满足面值相邻两个零钱至少为二倍关系的前提条件.例如1,2,5,10,20……这样的零钱组应用贪心最简单 ...

随机推荐

  1. 示例解读Java的跨平台原理

    首先简单的解释一下Java跨平台的特征,相当于说写一个Java程序论述上可以运行在不同的操作系统平台上面(此处的平台我们就简单的看成是操作系统平台).下面我们用一些事例来说明它的好处. 我们先了解一些 ...

  2. Activiti入门 -- 环境搭建和核心API简介

    相关文章: <史上最权威的Activiti框架学习指南> <Activiti入门 -- 轻松解读数据库> 本章内容,主要讲解Activiti框架环境的搭建,能够使用Activi ...

  3. USACO Section1.1 Friday the Thirteenth 解题报告

    friday解题报告 —— icedream61 博客园(转载请注明出处) -------------------------------------------------------------- ...

  4. CentOS搭建pptpd服务笔记

    pptpd.rpm 包下载.http://poptop.sourceforge.net/yum/stable/packages/ 参考资料:http://www.oschina.net/questio ...

  5. Python作业--登录接口

    作业需求: 编写登陆接口 输入用户名密码 认证成功后显示欢迎信息 输错三次后锁定 实现思路: 1.从文件获取用户名密码 2.判断是否在黑名单中 3.验证用户名密码 成功:输出认证成功 错误:判断验证次 ...

  6. 孤荷凌寒自学python第二十五天初识python的time模块

    孤荷凌寒自学python第二十五天python的time模块 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) 通过对time模块添加引用,就可以使用python的time模块来进行相关的时间操 ...

  7. diskimage-builder-command

    yum -y install python-virtualenv.noarch virtualenv ~/dib-virtualenv . ~/dib-virtualenv/bin/activate ...

  8. 数据结构与算法之顺序表C语言实现

    顺序表等相关概念请自行查阅资料,这里主要是实现. 注: 1.顺序表C语言实现: 2.按较简单的方式实现,主要帮助理解,可在此基础上修改,更加完善: 3.提供几个简单函数,可自行添加功能: 4.可用C+ ...

  9. NodeJs02 美女爬虫

    note: demo代码要编号 导出模块 一个js文件就是一个模块,模块内部的所有变量,对象,方法对外界都不可见.如果想暴漏出去让别人用,就需要导出模块.语法如下: module.exports = ...

  10. C++ 虚继承内存分配

    我们知道,虚继承的基类在类的层次结构中只可能出现一个实例.虚基类在类的层次结构中的位置是不能固定的,因为继承了虚基类的类可能会再次被其他类多继承. 比如class A: virtual T{} 这时T ...