• 以下为个人翻译方便理解
  • 编辑距离问题是一个经典的动态规划问题。首先定义dp[i][j表示word1[0..i-1]到word2[0..j-1]的最小操作数(即编辑距离)。
  • 状态转换方程有两种情况:边界情况和一般情况,以上表示中 i和j均从1开始(注释:即至少一个字符的字符串向一个字符的字符串转换,0字符到0字符转换编辑距离自然为0)
  • 1.边界情况:将一个字符串转化为空串,很容易看出把word[0...i-1]转化成空串“”至少需要i次操作(注释:i次删除),则其编辑距离为i,即:dp[i][0] = i;dp[0][j] = j.
  • 2.一般情况:转化非空字符串word1[0..i - 1] 为另一非空字符串 word2[0..j - 1],此处问题转化为几个个子问题:假定已知word1[0..i - 2] 到 word2[0..j - 2]的编辑距离, 即dp[i - 1][j - 1],只需考虑word[i - 1] 和 word2[j - 1]

    - 如果 word[i - 1] == word2[j - 1],无需操作即可满足word1[0..i - 1] 与 word2[0..j - 1]相同,则编辑距离dp[i][j] = dp[i - 1][j - 1]

    - 如果 word[i - 1] != word2[j - 1],分为三种子情况:

    - 用 word2[j - 1]替换word1[i - 1],则有 (dp[i][j] = dp[i - 1][j - 1] + 1 (一次操作用于替换));

    - 删除 word1[i - 1] 使得 word1[0..i - 2] = word2[0..j - 1],则有(dp[i][j] = dp[i - 1][j] + 1 (一次操作用于删除));

    - 在word1[0..i - 1] 中插入 word2[j - 1] 使得 word1[0..i - 1] + word2[j - 1] = word2[0..j - 1] ,则有(dp[i][j] = dp[i][j - 1] + 1 (一次操作用于插入)).

    为了保证理解插入和删除带来的细微差别,对于删除,其实是将word1[0..i - 2] 转化成 word2[0..j - 1], 编辑距离是 dp[i - 1][j],之后直接删除word1[i - 1],一次操作,插入也是类似

    (注释:就是由word1[0..i - 2] 编辑转化成 word2[0..j - 1],删除word1[i - 1]两个操作共同完成实现将word1[0..i - 1] 转化成 word2[0..j - 1])

  • 合并规如下:
    • dp[i][0] = i;
    • dp[0][j] = j;
    • dp[i][j] = dp[i - 1][j - 1], if word1[i - 1] = word2[j - 1];
    • dp[i][j] = min(dp[i - 1][j - 1] + 1, dp[i - 1][j] + 1, dp[i][j - 1] + 1)
  • 转化为代码如下

    '''

    class Solution {

    public:

    int minDistance(string word1, string word2) {

    int m = word1.length(), n = word2.length();

    vector
  • 你可能会注意到每次更新dp[i][j],我们只需要dp[i - 1][j - 1], dp[i][j - 1], dp[i - 1][j]就行
  • 事实上我们不必维护整个m*n矩阵。相反维护一栏即可,代码空间复杂度降为O(m)或者O(n)取决于你维护的的是矩阵的一行还是一列
  • 优化后代码如下:

    '''

    class Solution {

    public:

    int minDistance(string word1, string word2) {

    int m = word1.length(), n = word2.length();

    vector

leetcode72. Edit Distance(编辑距离)的更多相关文章

  1. Edit Distance编辑距离(NM tag)- sam/bam格式解读进阶

    sam格式很精炼,几乎包含了比对的所有信息,我们平常用到的信息很少,但特殊情况下,我们会用到一些较为生僻的信息,关于这些信息sam官方文档的介绍比较精简,直接看估计很难看懂. 今天要介绍的是如何通过b ...

  2. [LeetCode] Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  3. leetCode 72.Edit Distance (编辑距离) 解题思路和方法

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  4. [LeetCode] 72. Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  5. [leetcode72]Edit Distance(dp)

    题目链接:https://leetcode.com/problems/edit-distance/ 题意:求字符串的最短编辑距离,就是有三个操作,插入一个字符.删除一个字符.修改一个字符,最终让两个字 ...

  6. leetcode72. Edit Distance

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  7. 【LeetCode每天一题】Edit Distance(编辑距离)

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  8. 【LeetCode】72. Edit Distance 编辑距离(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 记忆化搜索 动态规划 日期 题目地址:http ...

  9. edit distance(编辑距离,两个字符串之间相似性的问题)

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

随机推荐

  1. UVA 1395 (kruskal)

    /* 最大路与最小路的问题: 这道题看似简单,但是若不知道思路将无法写出. 思路:最小生成树很容易求出,但是最大值与最小值只差很难保证是最小的, 比如:1 5 5 6 100 101 很明显101 - ...

  2. [java]wordcount程序

    词数统计系统. 作业解析:这次作业的内容是从本地读取一个程序代码,计算出这个程序中的行数,单词数,也可进行拓展. 实现语言:java 编程思路: 程序是由各种单词和符号组成的,单词包括关键字,标识符这 ...

  3. Web应用功能测试测试点

    做了几年的功能测试,也经手了好几个Web应用的项目,在做项目当中积累了一些经验.在这里我对通用一些功能模块的测试点做个记录,一来梳理一下测试用例设计的思路,以便加快相似项目的测试用例的设计,二来有利于 ...

  4. (转) Awesome - Most Cited Deep Learning Papers

    转自:https://github.com/terryum/awesome-deep-learning-papers Awesome - Most Cited Deep Learning Papers ...

  5. C#与C/C++的交互

    引擎内核用C++为了保证运行速度,程序员可以使用C#来编写其他的业务逻辑,可以使用.NET类库中的绝大多数类,这样来降低开发难度,同时也降低了入门难度,可以吸引更多的.NET程序.

  6. Lua简介

    Lua是一种扩展语言,脚本语言,还没有主程序的概念,类似于插件,也即不能直接使用,必须嵌入在牛逼的语言里使用,如Python. Lua由C语言编写,可以在宿主语言里写一段c程序,让Lua的解释器使用, ...

  7. Jquery序列化与反序列化备忘

    序列化:JSON.stringify(obj) 反序列化:$.parseJSON(str)

  8. Vigenère密码

    来源  NOIP2012复赛 提高组 第一题 描述 16世纪法国外交家Blaise de Vigenère设计了一种多表密码加密算法--Vigenère密码.Vigenère密码的加密解密算法简单易用 ...

  9. vs2008及以上的ActiveX测试容器在哪儿

    解压缩 vssetupdir \Samples\1033\VC2010Samples.zip ,位于C++\MFC\ole\TstCon\ vs2008中的sample的话,要改TCProps项目的L ...

  10. [转]Windows 下的进程间通讯及数据共享

    http://blog.codingnow.com/2005/10/interprocess_communications.html Windows 下有很多方法实现进程间通讯,比如用 socket, ...