CH2101 可达性统计

描述

给定一张N个点M条边的有向无环图,分别统计从每个点出发能够到达的点的数量。N,M≤30000。

输入格式

第一行两个整数N,M,接下来M行每行两个整数x,y,表示从x到y的一条有向边。

输出格式

共N行,表示每个点能够到达的点的数量。

样例输入

10 10
3 8
2 3
2 5
5 9
5 9
2 3
3 9
4 8
2 10
4 9

样例输出

1
6
3
3
2
1
1
1
1
1

思路

我们可以利用记忆化搜索,对于每个点,记录它能到达的点的集合。

至于怎么记录这个集合,我们采用bitset

bitset<MAXN> f[MAXN];

由于bitset十分省内存,30000大小就占用30000bit,不用担心炸空间。

还有,bitset支持位运算!你可以当做一个二进制数来操作,也可以当做一个bool数组,还支持各种神奇函数,十分强大。

bitset<MAXN> a, b;
a[1] = 1;//当做bool数组~
b[2] = 1;
a = a | b;//支持位运算~
printf("%llu\n", a.count());//统计1的个数~ 返回值是unsigned long long类型的

搜索过程十分简单,差不多是一个记忆化搜索模板。

P.S. 当然你也可以拓扑序DP

代码

#include<bits/stdc++.h>
using namespace std;
#define MAXN 30005
#define MAXM 30005
#define bs bitset<30005> int n, m;
int hd[MAXN], nxt[MAXM], to[MAXM], tot;
bs f[MAXN];
int x, y; inline void Add( int x, int y ){ nxt[++tot] = hd[x]; hd[x] = tot; to[tot] = y; } void DFS( int x ){
if ( f[x].any() ) return;
f[x][x] = 1;
for ( int i = hd[x]; i; i = nxt[i] )
f[x] |= ( DFS( to[i] ), f[to[i]] );
} int main(){
scanf( "%d%d", &n, &m );
for ( int i = 1; i <= m; ++i ){ scanf( "%d%d", &x, &y ); Add( x, y ); }
for ( int i = 1; i <= n; ++i ) printf( "%llu\n", ( DFS(i), f[i].count() ) );
return 0;
}

「CH2101」可达性统计 解题报告的更多相关文章

  1. 「NOI2015」寿司晚宴 解题报告

    「NOI2015」寿司晚宴 这个题思路其实挺自然的,但是我太傻了...最开始想着钦定一些,结果发现假了.. 首先一个比较套路的事情是状压前8个质数,后面的只会在一个数出现一次的再想办法就好. 然后发现 ...

  2. 「FJOI2016」神秘数 解题报告

    「FJOI2016」神秘数 这题不sb,我挺sb的... 我连不带区间的都不会哇 考虑给你一个整数集,如何求这个神秘数 这有点像一个01背包,复杂度和值域有关.但是你发现01背包可以求出更多的东西,就 ...

  3. 「ZJOI2016」大森林 解题报告

    「ZJOI2016」大森林 神仙题... 很显然线段树搞不了 考虑离线操作 我们只搞一颗树,从位置1一直往后移动,然后维护它的形态试试 显然操作0,1都可以拆成差分的形式,就是加入和删除 因为保证了操 ...

  4. 「SCOI2016」背单词 解题报告

    「SCOI2016」背单词 出题人sb 题意有毒 大概是告诉你,你给一堆n个单词安排顺序 如果当前位置为x 当前单词的后缀没在这堆单词出现过,代价x 这里的后缀是原意,但不算自己,举个例子比如abc的 ...

  5. 「SCOI2015」国旗计划 解题报告

    「SCOI2015」国旗计划 蛮有趣的一个题 注意到区间互不交错,那么如果我们已经钦定了一个区间,它选择的下一个区间是唯一的,就是和它有交且右端点在最右边的,这个可以单调队列预处理一下 然后往后面跳拿 ...

  6. 「JLOI2015」骗我呢 解题报告?

    「JLOI2015」骗我呢 这什么神仙题 \[\color{purple}{Link}\] 可以学到的东西 对越过直线的东西翻折进行容斥 之类的..吧? Code: #include <cstd ...

  7. 「JLOI2015」城池攻占 解题报告

    「JLOI2015」城池攻占 注意到任意两个人的战斗力相对大小的不变的 可以离线的把所有人赛到初始点的堆里 然后做启发式合并就可以了 Code: #include <cstdio> #in ...

  8. 「JLOI2015」管道连接 解题报告

    「JLOI2015」管道连接 先按照斯坦纳树求一个 然后合并成斯坦纳森林 直接枚举树的集合再dp一下就好了 Code: #include <cstdio> #include <cct ...

  9. 「JLOI2015」战争调度 解题报告

    「JLOI2015」战争调度 感觉一到晚上大脑就宕机了... 题目本身不难,就算没接触过想想也是可以想到的 这个满二叉树的深度很浅啊,每个点只会和它的\(n-1\)个祖先匹配啊 于是可以暴力枚举祖先链 ...

随机推荐

  1. 第三期 预测——Frenet 坐标

    Frenet坐标 在讨论过程模型之前,我们应该提到“Frenet Coordinates”,它是一种以比传统x,y笛卡尔坐标更直观的方式表示道路位置的方式. 用Frenet坐标,我们使用变量 s和d描 ...

  2. html选择题

    1.下面关于css样式和html样式的不同之处说法正确的是(A) A.html样式只影响应用它的文本和使用所选html样式创建的文本 B.css样式只可以设置文字字体样式        不仅仅能够设置 ...

  3. xml path 列转行实例

    SQL Server2005提供了一个新查询语法——For XML PATH(''),这个语法有什么用呢?想象一下这样一个查询需求:有两个表,班级表A.学生表B,要查询一个班级里有哪些学生?针对这个需 ...

  4. 一个框架看懂优化算法之异同 SGD/AdaGrad/Adam

    Adam那么棒,为什么还对SGD念念不忘 (1) —— 一个框架看懂优化算法 机器学习界有一群炼丹师,他们每天的日常是: 拿来药材(数据),架起八卦炉(模型),点着六味真火(优化算法),就摇着蒲扇等着 ...

  5. java什么是跨平台性?原理是什么?

    所谓跨平台性,是指java语言编写的程序,一次编译后,可以在多个系统平台上运行. 实现原理:Java程序是通过java虚拟机在系统平台上运行的,只要该系统可以安装相应的java虚拟机,该系统就可以运行 ...

  6. Python--day23--初识面向对象复习

    面向对象编程是大程序编程思想:

  7. [转载] linux、Solaris下xdmcp远程桌面服务

    原文链接 http://youlvconglin.blog.163.com/blog/static/52320420106243857254/ 使用图形界面远程登录linux和Solaris,首先要在 ...

  8. H3C 基本ACL

  9. 2018-2-13-win10-uwp-unix-timestamp-时间戳-转-DateTime

    title author date CreateTime categories win10 uwp unix timestamp 时间戳 转 DateTime lindexi 2018-2-13 17 ...

  10. linux 编译模块

    第一步, 我们需要看一下模块如何必须被建立. 模块的建立过程与用户空间的应用程序的 建立过程有显著不同; 内核是一个大的, 独立的程序, 对于它的各个部分如何组合在一起 有详细的明确的要求. 建立过程 ...