convolution

First, we want to compute σ(Wx(r,c) + b) for all valid (r,c) (valid meaning that the entire 8x8 patch is contained within the image; this is as opposed to a full convolution, which allows the patch to extend outside the image, with the area outside the image assumed to be 0), where W and b are the learned weights and biases from the input layer to the hidden layer, and x(r,c) is the 8x8 patch with the upper left corner at (r,c).

卷积操作是为了解除输入层和隐藏层之间的全链接 —— 全链接会带来很高的计算成本

这样只是对局部patch进行sigmoid(W,b),卷积操作使用matlab的conv2函数

First, conv2 performs a 2-D convolution, but you have 5 "dimensions" - image number, feature number, row of image, column of image, and (color) channel of image - that you want to convolve over. Because of this, you will have to convolve each feature and image channel separately for each image, using the row and column of the image as the 2 dimensions you convolve over. This means that you will need three outer loops over the image number imageNum, feature number featureNum, and the channel number of the image channel.

卷积的作用对象不是直接的像素点,而是图像中提取出的特征

Second, because of the mathematical definition of convolution, the feature matrix must be "flipped" before passing it toconv2. The following implementation tip explains the "flipping" of feature matrices when using MATLAB's convolution

使用matlab计算卷积,需要对卷积patch进行反转

In particular, you did the following to the patches:

  1. subtract the mean patch, meanPatch to zero the mean of the patches
  2. ZCA whiten using the whitening matrix ZCAWhite.

These same three steps must also be applied to the input image patches.

Taking the preprocessing steps into account, the feature activations that you should compute is , whereT is the whitening matrix and is the mean patch. Expanding this, you obtain , which suggests that you should convolve the images with WT rather than W as earlier, and you should add , rather than just b toconvolvedFeatures, before finally applying the sigmoid function.

对每个patch计算其均值和ZCA whiten

Pooling

首先在前面的使用convolution时是利用了图像的stationarity特征,即不同部位的图像的统计特征是相同的,那么在使用convolution对图片中的某个局部部位计算时,得到的一个向量应该是对这个图像局部的一个特征,既然图像有stationarity特征,那么对这个得到的特征向量进行统计计算的话,所有的图像局部块应该也都能得到相似的结果。对convolution得到的结果进行统计计算过程就叫做pooling,由此可见pooling也是有效的。常见的pooling方法有max pooling和average pooling等。并且学习到的特征具有旋转不变性

Convolution & Pooling exercise的更多相关文章

  1. ufldl学习笔记和编程作业:Feature Extraction Using Convolution,Pooling(卷积和汇集特征提取)

    ufldl学习笔记与编程作业:Feature Extraction Using Convolution,Pooling(卷积和池化抽取特征) ufldl出了新教程,感觉比之前的好,从基础讲起.系统清晰 ...

  2. [CS231n-CNN] Convolutional Neural Networks: architectures, convolution / pooling layers

    课程主页:http://cs231n.stanford.edu/     参考: 细说卷积神经网络:http://blog.csdn.net/han_xiaoyang/article/details/ ...

  3. Deeplearning - Overview of Convolution Neural Network

    Finally pass all the Deeplearning.ai courses in March! I highly recommend it! If you already know th ...

  4. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  5. 【转】Caffe初试(八)Blob,Layer和Net以及对应配置文件的编写

    深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成.Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型.它将所有的信息数据定义为blob ...

  6. 【转】Caffe初试(五)视觉层及参数

    本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. ...

  7. 【转】Caffe初试(四)数据层及参数

    要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等,而一个模型由多个层(layer)构成,每一层又由许多参数组成.所有的参数都定义在caffe.proto这个文件中 ...

  8. Caffe学习系列(2):数据层及参数

    要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一屋又由许多参数组成.所有的参数都定义在caffe.proto这个文件 ...

  9. Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

随机推荐

  1. TOJ 3517 The longest athletic track

    3517.   The longest athletic track Time Limit: 1.0 Seconds   Memory Limit: 65536KTotal Runs: 880   A ...

  2. Datazen图表创建和公布

     Datazen是被微软收购的移动端全平台的数据展现解决方式.此篇主要介绍怎样创建和公布图表. 如前面介绍,Datazen图表的创建和公布是通过Publisher的应用,它是Windows 8应用 ...

  3. Pleasant sheep and big big wolf

    pid=3046">点击打开链接 题目:在一个N * M 的矩阵草原上,分布着羊和狼.每一个格子仅仅能存在0或1仅仅动物.如今要用栅栏将全部的狼和羊分开.问怎么放,栅栏数放的最少,求出 ...

  4. less02-变量

    html <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF- ...

  5. lucene LZ4 会将doc存储在一个chunk里进行Lz4压缩 ES的_source便如此

    默认情况下,Elasticsearch 用 JSON 字符串来表示文档主体保存在 _source 字段中.像其他保存的字段一样,_source 字段也会在写入硬盘前压缩.The _source is ...

  6. 5.IntellijIDEA常用快捷键总结

    转自:https://blog.csdn.net/qq_17586821/article/details/52554731下面的这些常用快捷键需要在实际操作中不断地体会才能真正感受到它们的方便之处. ...

  7. [JZOJ4274] [NOIP2015模拟10.28B组] 终章-剑之魂 解题报告(二进制)

    Description [背景介绍]古堡,暗鸦,斜阳,和深渊……等了三年,我独自一人,终于来到了这里……“终焉的试炼吗?就在这里吗?”我自言自语道.“终焉的试炼啊!就在这里啊!”我再一次自言自语道.“ ...

  8. hdu1978 How many ways

    How many ways Problem Description 这是一个简单的生存游戏,你控制一个机器人从一个棋盘的起始点(1,1)走到棋盘的终点(n,m).游戏的规则描述如下: 机器人一开始在棋 ...

  9. IE(8~11+) 可用右键加速器

    必应词典工具 立即安装: 网络安装:http://dict.bing.com.cn/tools_dl.aspx?dl=ie8acc&mkt=ZH-CN 开发示例: <?xml versi ...

  10. Glide加载圆形图片第一次只显示默认图片

    Glide加载圆形图,又设置了默认图,很多时候第一次加载的时候只显示默认图.下面的方案可以解决.\ Glide.with(AudioDetailActivity.this) .load(cover) ...