链接:

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2023

题意:

对于一个R行C列的正整数矩阵(1≤R,C≤20),设Ai为前i行所有元素之和,Bi为前i列所有元素之和。
已知R,C和数组A和B,找一个满足条件的矩阵。矩阵中的元素必须是1~20之间的正整数。输入保证有解。

分析:

首先根据Ai和Bi计算出第i行的元素之和Ai'和第i列的元素之和Bi'。
如果把矩阵里的每个数都减1,则每个Ai'会减少C,而每个Bi'会减少R。
这样一来,每个元素的范围变成了0~19,它的好处很快就能看到。
建立一个二分图,每行对应一个X结点,每列对应一个Y结点,然后增加源点s和汇点t。
对于每个结点Xi,从s到Xi连一条弧,容量为Ai'-C;从Yi到t连一条弧,容量为Bi'-R。
而对于每对结点(Xi,Yj),从Xi向Yj连一条弧,容量为19。
接下来求s-t的最大流,如果所有s出发和到达t的边都满载,说明问题有解,
结点Xi->Yj的流量就是格子(i,j)减1之后的值。

代码:

 #include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
using namespace std; /// 结点下标从0开始,注意maxn
struct Dinic {
static const int maxn = + ;
static const int INF = 0x3f3f3f3f;
struct Edge {
int from, to, cap, flow;
}; int n, m, s, t; // 结点数,边数(包括反向弧),源点编号和汇点编号
vector<Edge> edges; // 边表。edges[e]和edges[e^1]互为反向弧
vector<int> G[maxn]; // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[maxn]; // BFS使用
int d[maxn]; // 从起点到i的距离
int cur[maxn]; // 当前弧下标 void init(int n) {
this->n = n;
edges.clear();
for(int i = ; i < n; i++) G[i].clear();
}
void AddEdge(int from, int to, int cap) {
edges.push_back((Edge){from, to, cap, });
edges.push_back((Edge){to, from, , });
m = edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool BFS() {
memset(vis, , sizeof(vis));
queue<int> Q;
Q.push(s);
vis[s] = ;
d[s] = ;
while(!Q.empty()) {
int x = Q.front(); Q.pop();
for(int i = ; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if(!vis[e.to] && e.cap > e.flow) { // 只考虑残量网络中的弧
vis[e.to] = ;
d[e.to] = d[x] + ;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int a) {
if(x == t || a == ) return a;
int flow = , f;
for(int& i = cur[x]; i < G[x].size(); i++) { // 从上次考虑的弧
Edge& e = edges[G[x][i]];
if(d[x]+ == d[e.to] && (f=DFS(e.to, min(a, e.cap-e.flow))) > ) {
e.flow += f;
edges[G[x][i]^].flow -= f;
flow += f;
a -= f;
if(a == ) break;
}
}
return flow;
}
int Maxflow(int s, int t) {
this->s = s; this->t = t;
int flow = ;
while(BFS()) {
memset(cur, , sizeof(cur));
flow += DFS(s, INF);
}
return flow;
}
vector<int> Mincut() { // 在Maxflow之后调用
vector<int> ans;
for(int i = ; i < edges.size(); i++) {
Edge& e = edges[i];
if(vis[e.from] && !vis[e.to] && e.cap > ) ans.push_back(i);
}
return ans;
}
}; const int UP = + ;
int id[UP][UP];
Dinic dc; int main() {
int T, R, C;
scanf("%d", &T);
for(int cases = ; cases <= T; cases++) {
scanf("%d%d", &R, &C);
dc.init(R+C+);
int start = R+C, finish = R+C+, last = ;
for(int v, i = ; i < R; i++) {
scanf("%d", &v);
dc.AddEdge(start, i, v - last - C);
last = v;
}
last = ;
for(int v, i = ; i < C; i++) {
scanf("%d", &v);
dc.AddEdge(R+i, finish, v - last - R);
last = v;
}
for(int r = ; r < R; r++) {
for(int c = ; c < C; c++) {
dc.AddEdge(r, R+c, );
id[r][c] = dc.edges.size() - ;
}
} dc.Maxflow(start, finish);
printf("Matrix %d\n", cases);
for(int r = ; r < R; r++) {
for(int c = ; c < C; c++) {
printf("%d ", dc.edges[id[r][c]].flow + );
}
printf("\n");
}
printf("\n");
}
return ;
}

UVa 11082 - Matrix Decompressing(最大流)的更多相关文章

  1. UVa 11082 Matrix Decompressing(最大流)

    不想吐槽了..sample input 和sample output 完全对不上...调了一个晚上...不想说什么了... -------------------------------------- ...

  2. UVA - 11082 Matrix Decompressing(最大流+行列模型)

    题目大意:给出一个R行C列的矩阵,如今给出他的前1-R行和 && 前1-C列和,问这个矩阵原来是如何的,要求每一个元素大小在1-20之间 解题思路:将每一行连接到超级源点,容量为该行的 ...

  3. UVA - 11082 Matrix Decompressing

    2. B - Matrix Decompressing 题意:定义一个R*C的正整数矩阵(1<=R,C<=20),设Ai为前i行所有元素之和,Bi为前i列所有元素之和. 题目已知R,C和数 ...

  4. UVA 11082 Matrix Decompressing 矩阵解压(最大流,经典)

    题意: 知道矩阵的前i行之和,和前j列之和(任意i和j都可以).求这个矩阵.每个格子中的元素必须在1~20之间.矩阵大小上限20*20. 思路: 这么也想不到用网络流解决,这个模型很不错.假设这个矩阵 ...

  5. UVA - 11082 Matrix Decompressing (最大流,技巧)

    很经典的网络流模型,行编号和列编号分别看成一个点,行和列和分别看出容量,一个点(x,y)看出是一条边,边的容量下界是1,所以先减去1,之后在加上就好了. 建图的时候注意分配好编号,解从残留网络中的边找 ...

  6. uva 11082 Matrix Decompressing 【 最大流 】

    只看题目的话~~怎么也看不出来是网络流的题目的说啊~~~~ 建图好神奇~~ 最开始不懂---后来看了一下这篇-- http://www.cnblogs.com/AOQNRMGYXLMV/p/42807 ...

  7. [题解]UVa 11082 Matrix Decompressing

    开始眨眼一看怎么也不像是网络流的一道题,再怎么看也觉得像是搜索.不过虽然这道题数据范围很小,但也不至于搜索也是可以随随便便就可以过的.(不过这道题应该是special judge,因为一题可以多解而且 ...

  8. UVa 11082 Matrix Decompressing - 网络流

    开始眨眼一看怎么也不像是网络流的一道题,再怎么看也觉得像是搜索.不过虽然这道题数据范围很小,但也不至于搜索也是可以随随便便就可以过的.(不过这道题应该是special judge,因为一题可以多解而且 ...

  9. UVA11082 Matrix Decompressing 最大流建模解矩阵,经典

    /** 题目:UVA11082 Matrix Decompressing 链接:https://vjudge.net/problem/UVA-11082 题意:lrj入门经典P374 已知一个矩阵的行 ...

随机推荐

  1. Unity3d编辑器扩展学习笔记

    编辑器扩展 1.添加菜单栏:把特性应用于静态方法 参数1:菜单名的空格后面是定义快捷键(单符号得用"_"开头,组合键%=Ctrl,#=Shift,&=Alt) 参数2:通过 ...

  2. Magento 2中文文档教程 - Magento 2.1.x 系统需求

    Magento 2.1.x 系统需求 操作系统 (Linux x86-64) Linux发行版如红帽企业Linux(RHEL),CentOS,Ubuntu,Debian,等等 内存需求 升级的应用程序 ...

  3. Hadoop实战之二~ hadoop作业调度详解(1)

    对Hadoop的最感兴趣的地方,也就在于Hadoop的作业调度了,在正式介绍如何搭建Hadoop之前,深入理解一下Hadoop的作业调度很有必要.我们不一定能用得上Hadoop,但是如果理通顺Hado ...

  4. Chetsheet: 2017 01.01 ~ 01.31

    Web TypeScript: the missing introduction Async HTTP API and service bus Optimizing the Performance o ...

  5. [android] 通过比对进行容器联动

    当中间容器变化之后,标题栏也要跟着变化 设计个比对依据: 抽象类BaseView中定义抽象方法,每个继承的View都必须实现,为自己的界面定义一个唯一的int常量,作为比对依据 降低容器之间的耦合度: ...

  6. 一:Maven知识整理

    一:maven的好处 1.依赖管理:对jar包的统一管理 可以节省空间 2.项目一键构建: 编码 编译 测试(junit) 运行 打包 部署 一个 tomcat:run就能把项目运行起来 Maven能 ...

  7. 九、cent OS下tomcat改变日志目录

    修改catalina.out的目录bin目录下修改catalina.sh:CATALINA_OUT="$CATALINA_BASE"/logs/catalina.out  此行内的 ...

  8. MySQL:ERROR 1820 (HY000): You must reset your password using ALTER USER statement before executing this statement.

    解决方法: 修改密码:alter user 'root'@'localhost' identified by '123456'; mysql> use mysql; ERROR 1820 (HY ...

  9. 设计模式-单例模式下对多例的思考(案例:Server服务器)

    前述: 在学习单例模式后,对老师课上布置的课后作业,自然要使用单例模式,但是不是一般的单例,要求引起我的兴趣,案例是用服务器. 老师布置的要求是:服务器只有一个,但是使用这个服务器时候可以有多个对象( ...

  10. git基本命令集合

    以下内容不适合初学者 括号中表示需要自己填写 v1.0 git add git commit -m git commit -a -m git commit -amend git clone git l ...