https://www.lydsy.com/JudgeOnline/problem.php?id=1853

https://www.lydsy.com/JudgeOnline/problem.php?id=2393

以前者为标准讲题。

在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号码,比如68,666,888都是“幸运号码”!但是这种“幸运号码”总是太少了,比如在[1,100]的区间内就只有6个(6,8,66,68,86,88),于是他又定义了一种“近似幸运号码”。lxhgww规定,凡是“幸运号码”的倍数都是“近似幸运号码”,当然,任何的“幸运号码”也都是“近似幸运号码”,比如12,16,666都是“近似幸运号码”。 现在lxhgww想知道在一段闭区间[a, b]内,“近似幸运号码”的个数。

这题如果不说暴力大家估计就都掉到数位dp的坑里了,然而显然我们也没法判断倍数关系是不是。

暴力搜一遍发现幸运数字很少,如果把相互为倍数的幸运数字删掉的话只有1000左右。

容斥一遍(1个数的倍数个数-2个数+3个数……)

优化:将数从大到小排序以此让lcm增长变快,然后当lcm>r时跳出。

#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double dl;
const int N=;
const int dig1=;
const int dig2=;
ll l,r,a[N],ans,tot;
inline bool cmp(ll x,ll y){return x>y;}
void init(ll x){
if(x>r)return;
if(x>)a[++tot]=x;
init(x*+dig1);
init(x*+dig2);
}
ll gcd(ll x,ll y){
return y?gcd(y,x%y):x;
}
void dfs(int now,int sum,ll k){
if(now>tot){
if(!sum)return;
ans+=((sum&)?:-)*(r/k-(l-)/k);
return;
}
dfs(now+,sum,k);
if((dl)k/gcd(k,a[now])<=(dl)r/a[now])
dfs(now+,sum+,k*a[now]/gcd(k,a[now]));
}
int main(){
scanf("%lld%lld",&l,&r);
init();sort(a+,a+tot+,cmp);
int tmp=;
for(int i=;i<=tot;i++){
for(int j=i+;j<=tot&&a[i];j++){
if(!a[j])continue;
if(a[i]%a[j]==)a[i]=;
}
if(a[i])a[++tmp]=a[i];
}
tot=tmp;
dfs(,,);
printf("%lld\n",ans);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ1853:[SCOI2010]幸运数字 & BZOJ2393:Cirno的完美算数教室——题解的更多相关文章

  1. bzoj 1853: [Scoi2010]幸运数字&&2393: Cirno的完美算数教室【容斥原理】

    翻了一些blog,只有我用状压预处理嘛2333,.把二进制位的0当成6,1当成8就行啦.(2393是2和9 然后\( dfs \)容斥,加上一个数的\( lcm \),减去两个数的\( lcm \), ...

  2. BZOJ2393: Cirno的完美算数教室

    2393: Cirno的完美算数教室 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 138  Solved: 83[Submit][Status] D ...

  3. [BZOJ2393] Cirno的完美算数教室(dfs+容斥原理)

    传送门 先通过dfs预处理出来所有只有2和9的数,也就大概2000多个. 想在[L,R]中找到是这些数的倍数的数,可以通过容斥原理 那么如果a % b == 0,那么便可以把 a 去掉,因为 b 的倍 ...

  4. 【BZOJ-1853&2393】幸运数字&Cirno的完美算数教室 容斥原理 + 爆搜 + 剪枝

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 1817  Solved: 665[Submit][Status] ...

  5. BZOJ1853 Scoi2010 幸运数字 【枚举+容斥】

    BZOJ1853 Scoi2010 幸运数字 Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号 ...

  6. Bzoj 2393: Cirno的完美算数教室 容斥原理,深搜

    2393: Cirno的完美算数教室 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 287  Solved: 175[Submit][Status][ ...

  7. 【BZOJ1853/2393】[Scoi2010]幸运数字/Cirno的完美算数教室 DFS+容斥

    [BZOJ1853][Scoi2010]幸运数字 Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那 ...

  8. bzoj1853[Scoi2010]幸运数字 容斥

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 3027  Solved: 1128[Submit][Status ...

  9. [BZOJ1853][Scoi2010]幸运数字 容斥+搜索剪枝

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 3202  Solved: 1198[Submit][Status ...

随机推荐

  1. 你的APK安全吗?来WeTest免费测!

    腾讯安全联合实验室就曾在<2018上半年互联网黑产研究报告>指出,移动端黑产规模宏大,恶意推广日均影响用户超过千万. 尤其在网络强相关的APP流行年代,当APP应用客户端上传与获取信息,大 ...

  2. Spring Cloud(八):配置中心(服务化与高可用)【Finchley 版】

    Spring Cloud(八):配置中心(服务化与高可用)[Finchley 版]  发表于 2018-04-19 |  更新于 2018-04-26 |  本文接之前的<Spring Clou ...

  3. 微信小程序navigator跳转失效

    在编写小程序时遇到一个问题:使用 <navigator url='/pages/lists/index'>...</navigator>进行跳转没有反应.控制台也没有报错,ap ...

  4. 一个简单的页面弹窗插件 jquery.pageMsgFrame.js

    页面弹窗是网站中常用的交互效果,它可以强提示网站的某些信息给用户,或者作用于某些信息的修改等等功能. 这几天在做一个项目的时候,就顺捎把这个插件写一下,栽棵树,自己乘凉吧. 原创博文,转载请注明出处: ...

  5. 从零开始的Python学习Episode 5——字典

    字典 字典是另一种可变容器模型,且可存储任意类型对象. 一.添加 (1)直接添加 dict={'name':'smilepup'} dict['age']=20 dict['name']='piggy ...

  6. MongoDB Sharding 机制分析

    MongoDB Sharding 机制分析 MongoDB 是一种流行的非关系型数据库.作为一种文档型数据库,除了有无 schema 的灵活的数据结构,支持复杂.丰富的查询功能外,MongoDB 还自 ...

  7. [git]基本用法1

    一.实验说明 本节实验为 Git 入门第一个实验,可以帮助大家熟悉如何创建和使用 git 仓库. 二.git的初始化 在使用git进行代码管理之前,我们首先要对git进行初始化. 1.Git 配置 使 ...

  8. 简单理解SQL Server锁机制

    多个用户同时对数据库的并发操作时,可能会遇到下面几种情况,导致数据前后不一致: 1,A.B事务同时对同一个数据进行修改,后提交的人的修改结果会破坏先提交的(丢失更新): 2,事务A修改某一条数据还未提 ...

  9. linux上使用J-Link调试S3C2440裸机代码

    linux上使用J-Link调试S3C2440裸机代码 工具: segger的jlink仿真器 segger的jlink for linux 交叉编译工具链里面的arm-xx-linux-xx-gdb ...

  10. Window命令行工具操作文件

    1,cd 命令用来切换目录 2,mkdir用来创建文件夹 3,rmdir用来删除空文件夹 4,创建指定类型的文件 type nul>"文件名和后缀" 5,打开指定文件用sta ...