插头dp 模板
[JLOI2009]神秘的生物
只需要维护连通情况,采用最小表示法,表示此格是否存在,也即插头是否存在
分情况讨论当前格子的轮廓线上方格子和左方格子状态,转移考虑当前格子选不选,决策后状态最后要能合法
\(\text{Code}\)
$\text{Code}$
#include <bits/stdc++.h>
#define IN inline
using namespace std;
const int N = 15;
int bit[N], a[N][N], ans = -2e9, n;
struct Hash_Table {
#define mod 590027
struct edge{int nxt, sta, f;}e[1 << 24];
int h[mod + 5], tot;
IN void clear(){tot = 0, memset(h, 0, sizeof h);}
IN void insert(int s, int v) {
int id = s % mod;
for(int i = h[id], x; i; i = e[i].nxt)
if (e[i].sta == s) return e[i].f = max(e[i].f, v), void();
e[++tot] = edge{h[id], s, v}, h[id] = tot;
}
}hs[2];
IN int Recode(int s, int v) {
int vis[8] = {}, cnt = 0, t = 0;
for(int i = 0, x; i < n; i++) {
if (!(x = (s >> 3*i) & 7)) continue;
if (!vis[x]) vis[x] = ++cnt;
t += vis[x] * bit[i];
}
if (cnt == 1) ans = max(ans, v);
return t;
}
IN int Count(int s, int v) {
int res = 0;
for(int i = 0; i < n; i++) if (((s >> 3*i) & 7) == v) ++res;
return res;
}
void solve() {
int cur = 0; hs[cur].insert(0, 0);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++) {
hs[cur^1].clear();
for(int k = 1; k <= hs[cur].tot; k++) {
int curS = hs[cur].e[k].sta, curF = hs[cur].e[k].f;
int bd = (curS >> 3*(j - 1)) & 7, br = 0;
if (j > 1) br = (curS >> 3*(j - 2)) & 7;
if (!bd && !br) {
hs[cur^1].insert(Recode(curS, curF), curF);
hs[cur^1].insert(Recode(curS + 7*bit[j-1], curF + a[i][j]), curF + a[i][j]);
}
else if (!bd && br) {
hs[cur^1].insert(Recode(curS, curF), curF);
hs[cur^1].insert(Recode(curS + br*bit[j-1], curF + a[i][j]), curF + a[i][j]);
}
else if (bd && !br) {
hs[cur^1].insert(Recode(curS, curF + a[i][j]), curF + a[i][j]);
if (Count(curS, bd) >= 2) hs[cur^1].insert(Recode(curS - bd*bit[j-1], curF), curF);
}
else {
if (Count(curS, bd) >= 2) hs[cur^1].insert(Recode(curS - bd*bit[j-1], curF), curF);
if (br != bd) for(int w = 0; w < n; w++) if (((curS >> 3*w) & 7) == bd) curS += bit[w] * (br - bd);
hs[cur^1].insert(Recode(curS, curF + a[i][j]), curF + a[i][j]);
}
}
cur ^= 1;
}
}
int main() {
scanf("%d", &n);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++) scanf("%d", &a[i][j]), ans = max(ans, a[i][j]);
bit[0] = 1;
for(int i = 1; i <= n; i++) bit[i] = bit[i - 1] << 3;
solve(), printf("%d\n", ans);
}
插头dp 模板的更多相关文章
- 插头DP模板
/* 插头dp模板 抄的GNAQ 的 括号表示法 */ #include<cstdio> #include<algorithm> #include<cstring> ...
- bzoj1814 Ural 1519 Formula 1(插头dp模板题)
1814: Ural 1519 Formula 1 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 924 Solved: 351[Submit][Sta ...
- hdu1964之插头DP求最优值
Pipes Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...
- 【HDU】1693:Eat the Trees【插头DP】
Eat the Trees Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- 插头dp练习
最近学了插头dp,准备陆续更新插头dp类练习. 学习论文还是cdq那篇<基于连通性状态压缩的动态规划问题>. 基本的想法都讲得很通透了,接下来就靠自己yy了. 还有感谢kuangbin大大 ...
- 学习笔记:插头DP
基于连通性的状压DP问题. 一般是给你一个网格,有一些连通性的限制. 例题 插头DP模板 链接 题意:网格图,去掉一些点,求哈密顿回路方案数. 一般按格递推(从上到下,从左到右). 每个格子要从四个方 ...
- 模板:插头dp
前言: 严格来讲有关dp的都不应该叫做模板,因为dp太活了,但是一是为了整理插头dp的知识,二是插头dp有良好的套路性,所以姑且还叫做模板吧. 这里先推荐一波CDQ的论文和这篇博客http://www ...
- LG5056 【模板】插头dp
题意 题目背景 ural 1519 陈丹琦<基于连通性状态压缩的动态规划问题>中的例题 题目描述 给出n*m的方格,有些格子不能铺线,其它格子必须铺,形成一个闭合回路.问有多少种铺法? 输 ...
- P5056 【模板】插头dp
\(\color{#0066ff}{ 题目描述 }\) 给出n*m的方格,有些格子不能铺线,其它格子必须铺,形成一个闭合回路.问有多少种铺法? \(\color{#0066ff}{输入格式}\) 第1 ...
- 【模板】插头dp
题目描述 题解: 插头$dp$中经典的回路问题. 首先了解一下插头. 一个格子,上下左右四条边对应四个插头.就像这样: 四个插头. 一个完整的哈密顿回路,经过的格子一定用且仅用了两个插头. 所以所有被 ...
随机推荐
- JavaSE -进阶基础---反射技术
反射常见用法: Java 反射机制是在运行状态中,对于任意一个类,都能够获得这个类的所有属性和方法,对于任意一个对象都能够调用它的任意一个属性和方法.这种在运行时动态的获取信息以及动态调用对象的方法的 ...
- Velocity模板引擎的的使用示例(入门级)
简单说下这个引擎的两个分支(虽然语言不同调用方法大同小异): 1.Java平台下的:org.apache.velocity 2..Net平台下的:NVelocity 注:本文章不涉及到后端只说模板的使 ...
- vim快捷键及命令大全
定位光标: G 将光标定位到文本末尾行首 gg 将光标定位到文本启始位置 0 (这个是零)定位到光标所在行行首 $ 定位到光标所在行行尾 数字G 跳转到第n行 移动光标: h 向左移动 l 向右移动 ...
- 数电第四周周结_by_yc
数电第四周周结 1.赋值语句 基本概念: 连续赋值: 1.连续赋值不能出现在过程块(如initial,always)中间: 2.连续赋值语句之间是并行的: 3. 只能对wire型变量进行赋 ...
- On Java 8读书笔记
第一章 什么是对象 1.1 抽象的历程 "对象":问题空间中的元素及其解决方案空间中的具体呈现. 理念即是通过添加各种新的对象,可以将程序改编为一种描述问题的语言. 对象是具有状态 ...
- 使用Google OR-Tools分析过去20年中国金融资产最佳配置组合
前两天,在朋友圈里看到一张截至2022年Q2的金融资产历年收益图如下,图中列举了国内从2005年到2022年近20年主要的金融资产历年收益率,随产生想法分析和验证下面几个问题: 过去20年,基于怎样的 ...
- SQLMap入门——判断文本中的请求是否存在注入
从文件中加载HTTP请求,SQLMap可以从一个文本文件中获取HTTP请求,这样就可以不设置其他参数(如cookie.POST数据等),txt文件中的内容为Web数据包 文本文件如图(请求数据可以通过 ...
- Linux系统CentOS6找回密码解决方法
1.首先在开机启动的时候快速按键盘上的"E"键 或者"ESC"键,会进入如下界面,按E键: 2.出现下面这个界面,选择第二项以kernel开头,再次按" ...
- 用Python来写个小型购物车程序
0x1 前言 Python语言能做很多东西的,像数据分析啊.自动化.开发. 爬虫(真的很棒哟,初学者玩很有成就感的啊哈哈)等等还有挺多. 0x2 用Python编写的一个小型购物车程序 import ...
- Spring中使用@RequestBody注解接收的实体类中的某些参数为null
1.问题描述 我写完一个接口,在用postman测试的时候,发现其中有一个参数cEnterpriseId明明是有值的,但接口controller接收到的该参数为null,但其他参数都不为null的. ...