【BZOJ】【1010】【HNOI2008】玩具装箱Toy
DP/斜率优化
根据题目描述很容易列出动规方程:$$ f[i]=min\{ f[j]+(s[i]-s[j]+i-j-1-L)^2 \}$$
其中 $$s[i]=\sum_{k=1}^{i} c[k] $$
而$x$即为$s[i]-s[j]+i-j-1$
这个$x$的表示实在太不好看,我们容易发现$i-j$其实是可以跟$s[i]-s[j]$合到一起的,即令 $c[i]=c[i]+1$,则$s[i]=\sum_{k=1}^{i} (c[i]+1)=\sum_{k=1}^{i}c[i]+i $,所以$x=s[i]-s[j]-1$。再将那个$-1$与$L$合并,即$L=L+1$,然后我们就得到整理后的方程:$$ f[i]=min\{ f[j]+(s[i]-s[j]-L)^2 \} $$
证明决策单调性:$( j > k )$
\[ \begin{aligned} f[j]+(s[i]-s[j]-L)^2 &< f[k]+(s[i]-s[k]-L)^2 \\ f[j]-f[k]+(s[j]^2-s[k]^2) &< 2*(s[i]-L)*(s[j]-s[k]) \\ \frac{ f[j]-f[k]+(s[j]^2-s[k]^2) }{ 2*(s[j]-s[k]) } &< s[i]-L \end{aligned} \]
这里将 $s[i]-L$ 当作一个整体来计算
/**************************************************************
Problem: 1010
User: Tunix
Language: C++
Result: Accepted
Time:132 ms
Memory:2640 kb
****************************************************************/ //BZOJ 1010
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>''){ if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<=''){ v=v*+ch-''; ch=getchar();}
return v*=sign;
}
const int N=;
typedef long long LL;
/******************tamplate*********************/
LL c[N],s[N],f[N];
int q[N],l,r;
double slop(int k,int j){
return double(f[j]+s[j]*s[j]-f[k]-s[k]*s[k])/
double(*(s[j]-s[k]));
}
int main(){
int n=getint(),L=getint()+;
F(i,,n){
c[i]=getint()+;
s[i]=s[i-]+c[i];
}
F(i,,n){
while(l<r && slop(q[l],q[l+])<s[i]-L) l++;
int t=q[l];
f[i]=f[t]+(s[i]-s[t]-L)*(s[i]-s[t]-L);
while(l<r && slop(q[r-],q[r])>slop(q[r],i))r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}
1010: [HNOI2008]玩具装箱toy
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 7156 Solved: 2714
[Submit][Status][Discuss]
Description
P
教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维
容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。
同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度
将为 x=j-i+Sigma(Ck) i<=K<=j
制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作
出任意长度的容器,甚至超过L。但他希望费用最小.
Input
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
Output
输出最小费用
Sample Input
3
4
2
1
4
Sample Output
HINT
Source
【BZOJ】【1010】【HNOI2008】玩具装箱Toy的更多相关文章
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7874 Solved: 3047[Submit][St ...
- BZOJ 1010 [HNOI2008]玩具装箱toy
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7184 Solved: 2724[Submit][St ...
- Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...
- BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...
- BZOJ 1010: [HNOI2008]玩具装箱toy | 单调队列优化DP
原题: http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题解: #include<cstdio> #include<algo ...
- BZOJ 1010 [HNOI2008]玩具装箱toy:斜率优化dp
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 有n条线段,长度分别为C[i]. 你需要将所有的线段分成若干组,每组中线段的 ...
- BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)
题目链接 斜率优化 不说了 网上很多 这的比较详细->Click Here or Here //1700kb 60ms #include<cstdio> #include<cc ...
- 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 12280 Solved: 5277[Submit][S ...
随机推荐
- 让TextView出现跑马灯效果
只需要在TextView中添加一些属性即可: <?xml version="1.0" encoding="utf-8"?> <LinearLa ...
- DOS下更改编码方式
使用CHCP命令,CHCP是Change Code Page的缩写. 936 简体中文GBK 437 美国英语 65001 UTF编码 如:chcp 65001则将dos窗口中的字符编码改为UTF编码 ...
- 消息队列之RabbitMQ
参考教程: http://www.rabbitmq.com/getstarted.html http://www.cnblogs.com/shanyou/p/4067250.html http://w ...
- ios第三方分享到qq、微信、人人网、微博总结
我们开发出来的APP通常要通过第三方分享到其他社交平台,如qq.微博微信 等.通过分享可以提高APP的传播效率,增加APP的曝光率,因此也算是APP功能 里的标配了吧.目前常用的第三方分享途径有qq. ...
- EMVTag系列3《持卡人基本信息数据》
Ø 9F61 持卡人证件号 L:2–26 R(需求):数据应存在,在读应用数据过程中,终端不检查: (PBOC2.0第五部分中规定)芯片中持卡人姓名 5F20与持卡人姓名扩展9F0B只能使用一 ...
- 批处理判断是否存在文件,存在则运行另外一个bat文件
现在需求如下: 使用bat文件判断是否存在ktr文件,存在则运行pan.bat,执行kettle脚本. 代码如下: @echo off @title 批处理判断文件夹是否存在 cd /d F: rem ...
- Oracle 11g Windows 迁移至 Linux
OS: windows server 2008 R2 enterprise DB: 11.2.0.1.0 数据库配置: ORACLE_BASE=D:\app\Administrator ORACLE_ ...
- poj 3061 Subsequence
题目连接 http://poj.org/problem?id=3061 Subsequence Description A sequence of N positive integers (10 &l ...
- ZLG_GUI配置与函数介绍
http://www.docin.com/p-825479457.html ZLG_GUI配置与函数介绍
- mysql查看日志
工具:mysqlbinlog, 在bin目录中日志在data目录中 日志过滤:mysqlbinlog mysql-bin.000011 | less mysqlbinlog mysql-bin.000 ...