实际上这题的题面还是颇有意思,对两个划分不同的定义暗示了第二类斯特林数,模数是\(1000000007\)又表明这题不是NTT。

那么一开始的想法是考虑每个集合的贡献。设这个集合为\(S\),那么它的贡献为\(|S|\begin{Bmatrix}n-|S|\\k-1 \end{Bmatrix} \sum_{i \in S} w_i\),而所有大小为\(t\)的集合的元素和为\({{n-1}\choose{t-1}}\sum_{i=1}^n w_i\),故最终答案为\(\sum_{i=1}^n w_i \sum_{j=1}^n j {{n-1}\choose{j-1}} \begin{Bmatrix} n-j\\k-1 \end{Bmatrix}\)。

然后正如评论区里的那位叫\(\color{purple} { \text {Blue233333}}\)老兄所说,这个公式萎了。我们需要考虑新的计数方式。

考虑每个元素的贡献。那么答案就是\(\sum_{i=1}^n w_i \sum_{j=1}^{n} j \times f(n,k,j)\),其中\(f(n,k,j)\)表示把\(n\)个不同元素分到\(k\)个无序的集合中,且标号为1(或者什么别的)的元素所在的集合大小为\(j\)的方案数。

我们记\(g(n,k,i,j)\)表示把\(n\)个不同元素分到\(k\)个无序的集合中,且标号为\(i\)的元素与标号为\(j\)的元素在同一个集合中的方案数。同样地,记\(h(n,k,i,j,s)\)表示把\(n\)个不同元素分到\(k\)个无序的集合中,且标号为\(i\)的元素与标号为\(j\)的元素在同一个大小为\(s\)的集合中的方案数。显然,有\(\sum_{s=1}^n h(n,k,i,j,s) = g(n,k,i,j)\)。

那么,我们有\(j \times f(n,k,j) = \sum_{i=1}^n h(n,k,1,i,j)\),消去了\(j\),这是因为每一种分配方式都被恰好重复计数\(j\)次。故答案等于\(\sum_{j=1}^n g(n,k,1,j)\)。

显然,有

\[g(n,k,i,j) =
\begin{cases}
\begin{Bmatrix} n \\ k \end{Bmatrix}, & \text {if $ i = j $} \\
\begin{Bmatrix} n-1 \\ k \end{Bmatrix}, & \text {if $i \neq j$}
\end{cases}\]

那么,答案就是\((\begin{Bmatrix} n \\ k \end{Bmatrix} + (n-1)\begin{Bmatrix} n-1 \\ k \end{Bmatrix}) \sum _ {i=1} ^ n w_i\)。

时间复杂度为\(O(n\log n)\)。

当然,这也就说明了\(\sum_{j=1}^n j {{n-1}\choose{j-1}} \begin{Bmatrix} n-j\\k-1 \end{Bmatrix} = \begin{Bmatrix} n \\ k \end{Bmatrix} + (n-1)\begin{Bmatrix} n-1 \\ k \end{Bmatrix}\)。希望有大佬给出这个的代数证明。

#include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9 + 7, N = 200010;
typedef long long ll;
ll power(ll a,int b) {
ll res = 1ll;
while (b) {
if (b&1) (res *= a) %= MOD;
(a *= a) %= MOD;
b >>= 1;
}
return res;
}
ll jc[N],inv[N],sum,ans;
ll comb(int a,int b) {
return (a < 0 || b < 0 || a < b) ? 0 : \
jc[a] * inv[a-b] % MOD * inv[b] % MOD;
}
int n,k,w;
int main() {
scanf("%d%d",&n,&k);
for (int i = 1 ; i <= n ; ++ i)
scanf("%d",&w), (sum += w) %= MOD;
jc[0] = 1ll;
for (int i = 1 ; i <= n ; ++ i)
jc[i] = jc[i-1] * i % MOD;
inv[n] = power(jc[n],MOD - 2);
for (int i = n-1 ; i >= 0 ; -- i)
inv[i] = inv[i+1] * (i+1) % MOD;
for (int i = 1, j = (k&1) ? 1 : -1 ; i <= k ; ++ i, j = -j) {
ans += j * comb(k,i) * power(i,n-1) % MOD;
ans = (ans % MOD + MOD) % MOD;
}
(ans *= n-1) %= MOD;
for (int i = 1, j = (k&1) ? 1 : -1 ; i <= k ; ++ i, j = -j) {
ans += j * comb(k,i) * power(i,n) % MOD;
ans = (ans % MOD + MOD) % MOD;
}
(ans *= sum) %= MOD;
(ans *= inv[k]) %= MOD;
cout << ans << endl;
return 0;
}

小结:在组合计数问题上另辟蹊径,除解题之外还能带来奇妙的结论。

【做题】CFedu41G. Partitions——推式子的更多相关文章

  1. P3768 简单的数学题 杜教筛+推式子

    \(\color{#0066ff}{ 题目描述 }\) 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ij ...

  2. AtCoder Grand Contest 1~10 做题小记

    原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-Grand-Contest-from-1-to-10.html 考虑到博客内容较多,编辑不方便的情 ...

  3. BZOJ做题记录[0512~?]

    觉得做一道开一篇真不好...好多想找的东西都被刷下去了... 至于?的日期究竟到什么时候...还是看心情...但是估计不会超过七天吧 最后更新时间:05/19 10:42 [05/14 10:56]我 ...

  4. 退役IV次后做题记录

    退役IV次后做题记录 我啥都不会了.... AGC023 D 如果所有的楼房都在\(S\)同一边可以直接得出答案. 否则考虑最左最右两边的票数,如果左边>=右边,那么最右边会投给左边,因为就算车 ...

  5. HNOI做题记录

    算是--咕完了? 2013.2014的就咕了吧,年代太久远了,并且要做的题还有那么多-- LOJ #2112. 「HNOI2015」亚瑟王 发现打出的概率只和被经过几次有关. 于是\(dp_{i,j} ...

  6. SHOI做题记录

    LOJ #2027. 「SHOI2016」黑暗前的幻想乡 考虑到每个公司一条边,那就等价于没有任何一家公司没有边. 然后就可以容斥+矩阵树定理,没了. LOJ #2028. 「SHOI2016」随机序 ...

  7. NOIP2016考前做题(口胡)记录

    NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...

  8. Codeforces 1528F - AmShZ Farm(转化+NTT+推式子+第二类斯特林数)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 ...

  9. ACM 做题过程中的一些小技巧。

    ACM做题过程中的一些小技巧. 1.一般用C语言节约空间,要用C++库函数或STL时才用C++; cout.cin和printf.scanf最好不要混用. 2.有时候int型不够用,可以用long l ...

随机推荐

  1. Unity shader学习之渐变纹理

    渐变纹理,及使用纹理来存储漫反射光照的结果,这种技术在游戏<军团要塞2>中流行起来,它也是由Valve公司(提出半兰伯特光照技术的公司)提出来的,他们使用这种技术来渲染游戏中具有插画风格的 ...

  2. maven 知识

    1. maven 环境配置 Maven 3.3 要求 JDK 1.7 或以上   Maven 3.2 要求 JDK 1.6 或以上   Maven 3.0/3.1 要求 JDK 1.5 或以上 2. ...

  3. scrapy:get cookie from response

    scrapy shell fetch('your_url') response.headers.getlist("Set-Cookie")https://stackoverflow ...

  4. flask 数据库操作(增删改查)

    数据库操作 现在我们创建了模型,生成了数据库和表,下面来学习常用的数据库操作,数据库操作主要是CRUD,即Create(创建).Read(读取/查询).Update(更新)和Delete(删除). S ...

  5. Android百大框架排行榜

    Android百大框架排行榜 15类Android通用流行框架 - 流风,飘然的风 - 博客园https://www.cnblogs.com/zdz8207/p/android-opensource- ...

  6. mac电脑使用,开发环境配置指南

    mac电脑使用,开发环境配置指南 前端工具链,mac下都很好用 用brew来装软件 用brew cask来装应用 Introduction · macOS Setup Guidehttp://sour ...

  7. Django框架----跨表查询及添加记录

    一:创建表 书籍模型: 书籍有书名和出版日期,一本书可能会有多个作者,一个作者也可以写多本书,所以作者和书籍的关系就是多对多的关联关系(many-to-many);     一本书只应该由一个出版商出 ...

  8. C++ for循环与迭代器

    1.基本的for循环 std::vector<int> arr; ... for(std::vector<int>::iterator it=arr.begin();it!=a ...

  9. GoldenGate for bigdata 12.3.1.1

    GoldenGate for big data 12.3.1.1在8.18已经发布,主要新特性如下: 1. 新目标:Amazon Kinesis 2. 新目标:使用Kafka Connect API及 ...

  10. HTML(续)

    1.有frame就无body,框架的noresize:设置框架大小不能改变.2.链接在框架中的应用target:有定为目标的功能.<a href = "链接源地址" targ ...