【做题】CFedu41G. Partitions——推式子
实际上这题的题面还是颇有意思,对两个划分不同的定义暗示了第二类斯特林数,模数是\(1000000007\)又表明这题不是NTT。
那么一开始的想法是考虑每个集合的贡献。设这个集合为\(S\),那么它的贡献为\(|S|\begin{Bmatrix}n-|S|\\k-1 \end{Bmatrix} \sum_{i \in S} w_i\),而所有大小为\(t\)的集合的元素和为\({{n-1}\choose{t-1}}\sum_{i=1}^n w_i\),故最终答案为\(\sum_{i=1}^n w_i \sum_{j=1}^n j {{n-1}\choose{j-1}} \begin{Bmatrix} n-j\\k-1 \end{Bmatrix}\)。
然后正如评论区里的那位叫\(\color{purple} { \text {Blue233333}}\)老兄所说,这个公式萎了。我们需要考虑新的计数方式。
考虑每个元素的贡献。那么答案就是\(\sum_{i=1}^n w_i \sum_{j=1}^{n} j \times f(n,k,j)\),其中\(f(n,k,j)\)表示把\(n\)个不同元素分到\(k\)个无序的集合中,且标号为1(或者什么别的)的元素所在的集合大小为\(j\)的方案数。
我们记\(g(n,k,i,j)\)表示把\(n\)个不同元素分到\(k\)个无序的集合中,且标号为\(i\)的元素与标号为\(j\)的元素在同一个集合中的方案数。同样地,记\(h(n,k,i,j,s)\)表示把\(n\)个不同元素分到\(k\)个无序的集合中,且标号为\(i\)的元素与标号为\(j\)的元素在同一个大小为\(s\)的集合中的方案数。显然,有\(\sum_{s=1}^n h(n,k,i,j,s) = g(n,k,i,j)\)。
那么,我们有\(j \times f(n,k,j) = \sum_{i=1}^n h(n,k,1,i,j)\),消去了\(j\),这是因为每一种分配方式都被恰好重复计数\(j\)次。故答案等于\(\sum_{j=1}^n g(n,k,1,j)\)。
显然,有
\begin{cases}
\begin{Bmatrix} n \\ k \end{Bmatrix}, & \text {if $ i = j $} \\
\begin{Bmatrix} n-1 \\ k \end{Bmatrix}, & \text {if $i \neq j$}
\end{cases}\]
那么,答案就是\((\begin{Bmatrix} n \\ k \end{Bmatrix} + (n-1)\begin{Bmatrix} n-1 \\ k \end{Bmatrix}) \sum _ {i=1} ^ n w_i\)。
时间复杂度为\(O(n\log n)\)。
当然,这也就说明了\(\sum_{j=1}^n j {{n-1}\choose{j-1}} \begin{Bmatrix} n-j\\k-1 \end{Bmatrix} = \begin{Bmatrix} n \\ k \end{Bmatrix} + (n-1)\begin{Bmatrix} n-1 \\ k \end{Bmatrix}\)。希望有大佬给出这个的代数证明。
#include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9 + 7, N = 200010;
typedef long long ll;
ll power(ll a,int b) {
ll res = 1ll;
while (b) {
if (b&1) (res *= a) %= MOD;
(a *= a) %= MOD;
b >>= 1;
}
return res;
}
ll jc[N],inv[N],sum,ans;
ll comb(int a,int b) {
return (a < 0 || b < 0 || a < b) ? 0 : \
jc[a] * inv[a-b] % MOD * inv[b] % MOD;
}
int n,k,w;
int main() {
scanf("%d%d",&n,&k);
for (int i = 1 ; i <= n ; ++ i)
scanf("%d",&w), (sum += w) %= MOD;
jc[0] = 1ll;
for (int i = 1 ; i <= n ; ++ i)
jc[i] = jc[i-1] * i % MOD;
inv[n] = power(jc[n],MOD - 2);
for (int i = n-1 ; i >= 0 ; -- i)
inv[i] = inv[i+1] * (i+1) % MOD;
for (int i = 1, j = (k&1) ? 1 : -1 ; i <= k ; ++ i, j = -j) {
ans += j * comb(k,i) * power(i,n-1) % MOD;
ans = (ans % MOD + MOD) % MOD;
}
(ans *= n-1) %= MOD;
for (int i = 1, j = (k&1) ? 1 : -1 ; i <= k ; ++ i, j = -j) {
ans += j * comb(k,i) * power(i,n) % MOD;
ans = (ans % MOD + MOD) % MOD;
}
(ans *= sum) %= MOD;
(ans *= inv[k]) %= MOD;
cout << ans << endl;
return 0;
}
小结:在组合计数问题上另辟蹊径,除解题之外还能带来奇妙的结论。
【做题】CFedu41G. Partitions——推式子的更多相关文章
- P3768 简单的数学题 杜教筛+推式子
\(\color{#0066ff}{ 题目描述 }\) 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ij ...
- AtCoder Grand Contest 1~10 做题小记
原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-Grand-Contest-from-1-to-10.html 考虑到博客内容较多,编辑不方便的情 ...
- BZOJ做题记录[0512~?]
觉得做一道开一篇真不好...好多想找的东西都被刷下去了... 至于?的日期究竟到什么时候...还是看心情...但是估计不会超过七天吧 最后更新时间:05/19 10:42 [05/14 10:56]我 ...
- 退役IV次后做题记录
退役IV次后做题记录 我啥都不会了.... AGC023 D 如果所有的楼房都在\(S\)同一边可以直接得出答案. 否则考虑最左最右两边的票数,如果左边>=右边,那么最右边会投给左边,因为就算车 ...
- HNOI做题记录
算是--咕完了? 2013.2014的就咕了吧,年代太久远了,并且要做的题还有那么多-- LOJ #2112. 「HNOI2015」亚瑟王 发现打出的概率只和被经过几次有关. 于是\(dp_{i,j} ...
- SHOI做题记录
LOJ #2027. 「SHOI2016」黑暗前的幻想乡 考虑到每个公司一条边,那就等价于没有任何一家公司没有边. 然后就可以容斥+矩阵树定理,没了. LOJ #2028. 「SHOI2016」随机序 ...
- NOIP2016考前做题(口胡)记录
NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...
- Codeforces 1528F - AmShZ Farm(转化+NTT+推式子+第二类斯特林数)
Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 ...
- ACM 做题过程中的一些小技巧。
ACM做题过程中的一些小技巧. 1.一般用C语言节约空间,要用C++库函数或STL时才用C++; cout.cin和printf.scanf最好不要混用. 2.有时候int型不够用,可以用long l ...
随机推荐
- Chess (SG + 状态压缩预处理)
#include<bits/stdc++.h> #define bit(t) (1 << t) using namespace std; <<; ;//k是集合s的 ...
- 【Hbase学习之二】Hbase 搭建
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 hbase-2.1.3 一.单机模 ...
- kalinux实现自适用全屏、与物理主机共享文件方法
1.执行虚拟机>安装VMware Tools菜单命令,自动挂载光驱(一般是自动挂载的,如果没有自动挂载请自行百度linux如何手动挂载光驱) 2.打开vm光驱的vmtools复制此文件到桌面: ...
- Javascript深入理解构造函数和原型对象
1.在典型的oop的语言中,如java,都存在类的概念,类就是对象的模板,对象就是类的实例.但在js中不存在类的概念,js不是基于类,而是通过构造函数(constructor)和原型链(propoty ...
- HDU 2175 汉诺塔IX (递推)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2175 1,2,...,n表示n个盘子.数字大盘子就大.n个盘子放在第1根柱子上.大盘不能放在小盘上. ...
- AURO OtoSys IM100 vs Lonsdor K518ISE: which better?
Comparison: AURO OtoSys IM100 and Lonsdor K518ISE It’s aimed to help make a purchase of decent auto ...
- P1216 数字金字塔
P1216 数字金字塔 我们可以用 f [ i ] [ j ] 表示从(1,1)出发,到达(i,j)的最大权值和. (i , j)可以由(i - 1 , j)或者(i - 1 , j - 1)转化来 ...
- 关于springMVC 传递 对象参数的问题
1.前端请求必须是 post 2.前端数据data必须做 json字符串处理 JSON.stringify(data) 3. contentType: 'application/json', 4.@ ...
- js 简易时钟
html部分 <div id="clock"> </div> css部分 #clock{ width:600px ; text-align: center; ...
- 一名3年工作经验的java程序员应该具备的职业技能
一名3年工作经验的Java程序员应该具备的技能,这可能是Java程序员们比较关心的内容.我这里要说明一下,以下列举的内容不是都要会的东西—-但是如果你掌握得越多,最终能得到的评价.拿到的薪水势必也越高 ...