Metrics类型

在上一小节中我们带领读者了解了Prometheus的底层数据模型,在Prometheus的存储实现上所有的监控样本都是以time-series的形式保存在Prometheus内存的TSDB(时序数据库)中,而time-series所对应的监控指标(metric)也是通过labelset进行唯一命名的。

从存储上来讲所有的监控指标metric都是相同的,但是在不同的场景下这些metric又有一些细微的差异。 例如,在Node Exporter返回的样本中指标node_load1反应的是当前系统的负载状态,随着时间的变化这个指标返回的样本数据是在不断变化的。而指标node_cpu所获取到的样本数据却不同,它是一个持续增大的值,因为其反应的是CPU的累积使用时间,从理论上讲只要系统不关机,这个值是会无限变大的。

为了能够帮助用户理解和区分这些不同监控指标之间的差异,Prometheus定义了4中不同的指标类型(metric type):Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)、Summary(摘要)。

在Exporter返回的样本数据中,其注释中也包含了该样本的类型。例如:

# HELP node_cpu Seconds the cpus spent in each mode.
# TYPE node_cpu counter
node_cpu{cpu="cpu0",mode="idle"} 362812.7890625

Counter:只增不减的计数器

Counter类型的指标其工作方式和计数器一样,只增不减(除非系统发生重置)。常见的监控指标,如http_requests_total,node_cpu都是Counter类型的监控指标。 一般在定义Counter类型指标的名称时推荐使用_total作为后缀。

Counter是一个简单但有强大的工具,例如我们可以在应用程序中记录某些事件发生的次数,通过以时序的形式存储这些数据,我们可以轻松的了解该事件产生速率的变化。PromQL内置的聚合操作和函数可以用户对这些数据进行进一步的分析:

例如,通过rate()函数获取HTTP请求量的增长率:

rate(http_requests_total[5m])

查询当前系统中,访问量前10的HTTP地址:

topk(10, http_requests_total)

Gauge:可增可减的仪表盘

与Counter不同,Gauge类型的指标侧重于反应系统的当前状态。因此这类指标的样本数据可增可减。常见指标如:node_memory_MemFree(主机当前空闲的内容大小)、node_memory_MemAvailable(可用内存大小)都是Gauge类型的监控指标。

通过Gauge指标,用户可以直接查看系统的当前状态:

node_memory_MemFree

对于Gauge类型的监控指标,通过PromQL内置函数delta()可以获取样本在一段时间返回内的变化情况。例如,计算CPU温度在两个小时内的差异:

delta(cpu_temp_celsius{host="zeus"}[2h])

还可以使用deriv()计算样本的线性回归模型,甚至是直接使用predict_linear()对数据的变化趋势进行预测。例如,预测系统磁盘空间在4个小时之后的剩余情况:

predict_linear(node_filesystem_free{job="node"}[1h], 4 * 3600)

使用Histogram和Summary分析数据分布情况

除了Counter和Gauge类型的监控指标以外,Prometheus还定义分别定义Histogram和Summary的指标类型。Histogram和Summary主用用于统计和分析样本的分布情况。

在大多数情况下人们都倾向于使用某些量化指标的平均值,例如CPU的平均使用率、页面的平均响应时间。这种方式的问题很明显,以系统API调用的平均响应时间为例:如果大多数API请求都维持在100ms的响应时间范围内,而个别请求的响应时间需要5s,那么就会导致某些WEB页面的响应时间落到中位数的情况,而这种现象被称为长尾问题。

为了区分是平均的慢还是长尾的慢,最简单的方式就是按照请求延迟的范围进行分组。例如,统计延迟在010ms之间的请求数有多少而1020ms之间的请求数又有多少。通过这种方式可以快速分析系统慢的原因。Histogram和Summary都是为了能够解决这样问题的存在,通过Histogram和Summary类型的监控指标,我们可以快速了解监控样本的分布情况。

例如,指标prometheus_tsdb_wal_fsync_duration_seconds的指标类型为Summary。 它记录了Prometheus Server中wal_fsync处理的处理时间,通过访问Prometheus Server的/metrics地址,可以获取到以下监控样本数据:

# HELP prometheus_tsdb_wal_fsync_duration_seconds Duration of WAL fsync.
# TYPE prometheus_tsdb_wal_fsync_duration_seconds summary
prometheus_tsdb_wal_fsync_duration_seconds{quantile="0.5"} 0.012352463
prometheus_tsdb_wal_fsync_duration_seconds{quantile="0.9"} 0.014458005
prometheus_tsdb_wal_fsync_duration_seconds{quantile="0.99"} 0.017316173
prometheus_tsdb_wal_fsync_duration_seconds_sum 2.888716127000002
prometheus_tsdb_wal_fsync_duration_seconds_count 216

从上面的样本中可以得知当前Prometheus Server进行wal_fsync操作的总次数为216次,耗时2.888716127000002s。其中中位数(quantile=0.5)的耗时为0.012352463,9分位数(quantile=0.9)的耗时为0.014458005s。

在Prometheus Server自身返回的样本数据中,我们还能找到类型为Histogram的监控指标prometheus_tsdb_compaction_chunk_range_bucket。

# HELP prometheus_tsdb_compaction_chunk_range Final time range of chunks on their first compaction
# TYPE prometheus_tsdb_compaction_chunk_range histogram
prometheus_tsdb_compaction_chunk_range_bucket{le="100"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="400"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="1600"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="6400"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="25600"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="102400"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="409600"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="1.6384e+06"} 260
prometheus_tsdb_compaction_chunk_range_bucket{le="6.5536e+06"} 780
prometheus_tsdb_compaction_chunk_range_bucket{le="2.62144e+07"} 780
prometheus_tsdb_compaction_chunk_range_bucket{le="+Inf"} 780
prometheus_tsdb_compaction_chunk_range_sum 1.1540798e+09
prometheus_tsdb_compaction_chunk_range_count 780

与Summary类型的指标相似之处在于Histogram类型的样本同样会反应当前指标的记录的总数(以_count作为后缀)以及其值的总量(以_sum作为后缀)。不同在于Histogram指标直接反应了在不同区间内样本的个数,区间通过标签len进行定义。

同时对于Histogram的指标,我们还可以通过histogram_quantile()函数计算出其值的分位数。不同在于Histogram通过histogram_quantile函数是在服务器端计算的分位数。 而Sumamry的分位数则是直接在客户端计算完成。因此对于分位数的计算而言,Summary在通过PromQL进行查询时有更好的性能表现,而Histogram则会消耗更多的资源。反之对于客户端而言Histogram消耗的资源更少。在选择这两种方式时用户应该按照自己的实际场景进行选择。

Metrics类型的更多相关文章

  1. Metrics

    系统开发到一定的阶段,线上的机器越来越多,就需要一些监控了,除了服务器的监控,业务方面也需要一些监控服务.Metrics作为一款监控指标的度量类库,提供了许多工具帮助开发者来完成自定义的监控工作. 举 ...

  2. 使用metrics统计接口tps

    metrics的简单介绍 metrics是一种性能指标工具,有很多开源工具使用之来来作为其性能监控,如Hadoop,Kafka,Spark,JStorm等. metrics使用最主要有三个东西: Me ...

  3. 自定义Metrics:让Prometheus监控你的应用程序

    前言 Prometheus社区提供了大量的官方以及第三方Exporters,可以满足Prometheus的采纳者快速实现对关键业务,以及基础设施的监控需求. 如上所示,一个简单的应用以及环境架构.一般 ...

  4. Prometheus学习系列(三)之Prometheus 概念:数据模型、metric类型、任务、实例

    前言 本文来自Prometheus官网手册1.Prometheus官网手册2 和 Prometheus简介 说明 Prometheus从根本上存储的所有数据都是时间序列: 具有时间戳的数据流只属于单个 ...

  5. Apache Flink 进阶(八):详解 Metrics 原理与实战

    本文由 Apache Flink Contributor 刘彪分享,本文对两大问题进行了详细的介绍,即什么是 Metrics.如何使用 Metrics,并对 Metrics 监控实战进行解释说明. 什 ...

  6. Spring Boot

    Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置.通过 ...

  7. Metrics-Java版的指标度量工具之一

    Metrics是一个给JAVA服务的各项指标提供度量工具的包,在JAVA代码中嵌入Metrics代码,可以方便的对业务代码的各个指标进行监控,同时,Metrics能够很好的跟Ganlia.Graphi ...

  8. 深入学习微框架:Spring Boot(转)

    转:http://www.infoq.com/cn/articles/microframeworks1-spring-boot/ 相关参考: https://spring.io/guides/gs/s ...

  9. 深入学习微框架:Spring Boot - NO

    http://blog.csdn.net/hengyunabc/article/details/50120001 Our primary goals are: Provide a radically ...

随机推荐

  1. 曹工说Tomcat1:从XML解析说起

    一.前言 第一次被人喊曹工,我相当诧异,那是有点久的事情了,楼主13年校招进华为,14年在东莞出差,给东莞移动的通信设备进行版本更新.他们那边的一个小伙子来接我的时候,这么叫我的,刚听到的时候,心里一 ...

  2. springboot 2.X 在访问静态资源的的时候出现404的问题

    通过idea快速搭建一个springboot项目: springboot版本2.1.6 在网上看的资料,springboot静态资源访问如下: "classpath:/META‐INF/re ...

  3. idea创建类报错

    创建类报错: 在idea.exe.vmoptions 或 idea64.exe.vmoptions中加入配置 -Djdk.util.zip.ensureTrailingSlash=false jar包 ...

  4. oracle 向数据库同时插入多条数据

    oracle 与 mysql 不同. mysql 可以直接插入多条数据的操作:  采用 INSERT INTO 某表 VALUES(各个值),VALUES(各个值),.....; 或者 INSERT ...

  5. PHP 碎碎念

    class Object { public static function get_self() { return new self(); } public static function get_s ...

  6. 嵊州D1T2 圣女

    嵊州D1T2 圣女 马格里多希望为自己死去却身体不腐的女儿申请圣女. 只是,他不知道神圣的基督教和教皇已经腐朽到了何种地步! 22 年来,他辗转教皇国的各个教堂,但各个教堂都只会以各种理由搪塞.推辞. ...

  7. windows美化工具7+ Taskbar Tweaker

    今天分享一个windows美化工具 7+ Taskbar Tweaker 调整工具专为 Windows 任务栏工作者量身定制,支持 Windows 7 以及更高版本的(非服务器版)微软操作系统平台. ...

  8. 开源框架Autofac使用入门

    目录导航 1.Autofac是什么 1.1什么是DI和IOC 1.2DI和IOC在项目中起到什么作用 2.Autofac如何使用 2.1下载 2.2代码Demo 2.3Demo分析 3总结 1.Aut ...

  9. python爬取新浪股票数据—绘图【原创分享】

    目标:不做蜡烛图,只用折线图绘图,绘出四条线之间的关系. 注:未使用接口,仅爬虫学习,不做任何违法操作. """ 新浪财经,爬取历史股票数据 ""&q ...

  10. 洛谷 P1039 侦探推理

    题目:https://www.luogu.org/problemnew/show/P1039 分析: 这道题是一道有技术含量的模拟,我们主要是不要让计算机向人一样思考,只需要让他穷举变化的星期几和当罪 ...