HDU 1517
题意略。
思路:
我们分别来考虑n取到的各个区间,从而发现其中的规律:
[2,9] 明显 Stan 必胜。
但是当n = 9 + 1时,Stan无论如何也不能取胜,并且此时,假设 Stan 取值 x ,那在[10 , x * 9]这个范围内一定是Ollie必胜。
Stan 一定会贪心地令x = 2,这样可以尽可能减损Ollie的必胜范围,而Ollie会使自己的数字选择成9,这样可以尽可能扩大自己的必胜范围。
所以:[10,18 = 2 * 9] Ollie 必胜
当n = 18 + 1时,Ollie无论如何也没有办法取胜了,这是他也会采取和 Stan 同样的贪心操作,通过令自己选择的所有数字取2来减损接下来 Stan 的必胜范围。
而Stan一定会使自己的所有数字选9来扩大自己的必胜范围。
所以:[19 , 162 = 9 * 2 * 9] Stan 必胜
由此可以找出解题方法,我把当前数字cur = 1,一次乘9,一次乘2,.......这样循环地乘下去,看什么时候超过n,超过n时看看现在乘了几次,
奇数次则是 Stan 赢,偶数次则是 Ollie 赢。
代码附上:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL; int main(){
LL n;
while(scanf("%d",&n) == ){
LL mul = ;
int i;
for(i = ;mul < n;++i){
mul *= LL((i & ) ? : );
}
printf("%s\n",(i & ) ? "Stan wins." : "Ollie wins.");
}
return ;
}
HDU 1517的更多相关文章
- 【hdu 1517】A Multiplication Game
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s) ...
- hdu 1517 博弈 **
博弈题: 题意:2 个人玩游戏,从 1 开始,轮流对数进行累乘,直到超过一个指定的值. 解题思路:如果输入是 2 ~ 9 ,因为Stan 是先手,所以Stan 必胜如果输入是 10~18 ,因为Oll ...
- HDU 1517 (类巴什博奕) A Multiplication Game
如果n在[2, 9]区间,那么Stan胜. 如果n在[10, 18]区间,那么Ollie胜,因为不管第一次Stan乘上多少,第二次Ollie乘上一个9,必然会得到一个不小于18的数. 如果n在[19, ...
- hdu 1517 A Multiplication Game 博弈论
思路:求必胜区间和必败区间! 1-9 先手胜 10-2*9后手胜 19-2*9*9先手胜 163-2*2*9*9后手胜 …… 易知右区间按9,2交替出现的,所以每次除以18,直到小于18时就可以直接判 ...
- (step8.2.7)hdu 1517(A Multiplication Game——巴什博弈变形)
题目大意:输入一个整数n.谁先报的数大于n,谁就输了.(初始值p == 1 , 后一个人报的数必须在前一个人报的数的基础上乘上(2 ~ 9)之间的任意一个数) 解题思路:巴什博奕的变形 1) 解题思 ...
- HDU 1517 A Multiplication Game 博弈
题目大意:从1开始Stan与Ollie经行博弈,stan先手,每次将当前数乘上(2~9)间的任意数,最后一次操作后大于等于n的人获胜. 题目思路: 1-9 stan 胜 10-18 ollie胜 19 ...
- HDU 1517 (累乘 找规律)
题意:2 个人玩游戏,从 1 开始,轮流对数进行累乘,直到超过一个指定的值. 解题思路:如果输入是 2 ~ 9 ,因为Stan 是先手,所以Stan 必胜如果输入是 10~18 ,因为Ollie 是后 ...
- HDU 1517 A Multiplication Game (SG函数找规律)
题意:两个玩家玩一个游戏,从 p = 1,开始,然后依次轮流选择一个2 - 9的数乘以 p,问你谁先凑够 p >= n. 析:找规律,我先打了一下SG函数的表,然后就找到规律了 我找到的是: 1 ...
- HDU 1517 A Multiplication Game (博弈)
A Multiplication Game Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...
- hdu 1517 A Multiplication Game 段sg 博弈 难度:0
A Multiplication Game Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...
随机推荐
- PHP 跨域处理
PHP 跨域处理 跨域访问失败是会出现 No 'Access-Control-Allow-Origin' header is present on the requested resource. Or ...
- HTML页面中的布局问题
在做网站中,给整个大的框架宽度设置为100%,然后设置body的最小宽度是网站的内容部分的宽度.网站内容的宽度是固定的.
- 用户体验要素——产品系统设计方法
用户体验已经成为了每个互联网人的口头词,特别是互联网产品经理或产品设计师. 的确,对于任何一个互联网产品而言,体验都是非常重要的. 但是具体的用户体验到底指的是哪些方面,界面,UI,还是交互,其中到底 ...
- 【Android】INSTALL_FAILED_UPDATE_INCOMPATIBLE
多是因为已经安装过该 apk 文件了,一般卸载了重新运行就 OK 了.
- java常见面试题目(二)
部分没有答案可以自行百度. 1.myeclipse与eclipse的区别. 2.说说对maven或者SVN的理解. 3.类的加载过程 (创建对象的过程) 1)子父类里静态属性 赋上默认初始值 如果有 ...
- 案例实战:每日上亿请求量的电商系统,JVM年轻代垃圾回收参数如何优化?
出自:http://1t.click/7TJ 目录: 案例背景引入 特殊的电商大促场景 抗住大促的瞬时压力需要几台机器? 大促高峰期订单系统的内存使用模型估算 内存到底该如何分配? 新生代垃圾回收优化 ...
- The introduction of the book American daily English notes (enlarged edition)
After reading the book of American daily English notes written by Linkun Yang[1], I think I should a ...
- 基于python语言使用余弦相似性算法进行文本相似度分析
编写此脚本的目的: 本人从事软件测试工作,近两年发现项目成员总会提出一些内容相似的问题,导致开发抱怨.一开始想搜索一下是否有此类工具能支持查重的工作,但并没找到,因此写了这个工具.通过从纸上谈兵到着手 ...
- react-native 入门基础介绍
目录 安装 项目 主要目录结构 入口 Home模块 Coobook模块 List模块 novel模块 相关参考 一个简单的demo,用于介绍react-native相关基础信息,主要是针对有兴趣的同学 ...
- 从零开始实现ASP.NET Core MVC的插件式开发(四) - 插件安装
标题:从零开始实现ASP.NET Core MVC的插件式开发(四) - 插件安装 作者:Lamond Lu 地址:https://www.cnblogs.com/lwqlun/p/11260750. ...