link:https://codeforces.com/contest/1114/problem/D

题意:

  给定一个数组,有不同的颜色,你可以从任意一个位置开始,改变颜色,相邻的是同一种颜色的位子的颜色也要跟着改变,问最少需要改变几次颜色。

思路:

  我一开始想的是去掉相邻重复后,假设有k个,那么答案就是k-1个,然后可以使结果更优的就是不相邻相同的,还能使结果更优的是一层再套一层相同的,就比如1,2,3,2,1。现场不知道怎么数这个套了几层,经过高人代码点拨,就是记忆化递归。

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> /* ⊂_ヽ
  \\ Λ_Λ 来了老弟
   \('ㅅ')
    > ⌒ヽ
   /   へ\
   /  / \\
   レ ノ   ヽ_つ
  / /
  / /|
 ( (ヽ
 | |、\
 | 丿 \ ⌒)
 | |  ) /
'ノ )  Lノ */ using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll oo = 1ll<<;
const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9+;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/*-----------------------showtime----------------------*/
const int maxn = 5e3+;
int a[maxn],b[maxn],dp[maxn][maxn];
int cal(int le,int ri){
if(dp[le][ri]>=)return dp[le][ri];
if(le >= ri) return ;
if(b[le]==b[ri])return dp[le][ri] = cal(le+,ri-) + ;
else return dp[le][ri] = max(cal(le+,ri), cal(le,ri-));
}
int main(){
int n;
scanf("%d", &n);
memset(dp, -, sizeof(dp));
for(int i=; i<=n; i++) scanf("%d", &a[i]); int tot = ;
for(int i=,j; i<=n; i++){
for(j=i; a[i]==a[j] && j <= n; j++);
b[++tot] = a[i];
i = j-;
}
cout<<tot--cal(,tot)<<endl;
return ;
}

CF 538 D. Flood Fill 递归 区间DP的更多相关文章

  1. Codeforces Round #538 (Div. 2) D. Flood Fill 【区间dp || LPS (最长回文序列)】

    任意门:http://codeforces.com/contest/1114/problem/D D. Flood Fill time limit per test 2 seconds memory ...

  2. CF 1114 D. Flood Fill

    D. Flood Fill 链接 题意: 一个颜色序列,每个位置有一个颜色,选择一个起始位置,每次可以改变包含这个位置的颜色段,将这个颜色段修改为任意一个颜色, 问最少操作多少次.n<=5000 ...

  3. CF 1114D(538,div2) Flood Fill

    https://codeforces.com/contest/1114/problem/D 题目 给一串数字,首先选择一个位置,类似于画图,然后每一轮按照以下步骤: 可以将这个位置所在的连通块改成其他 ...

  4. Codeforces Round #538 (Div. 2)D(区间DP,思维)

    #include<bits/stdc++.h>using namespace std;int a[5007];int dp[5007][5007];int main(){    int n ...

  5. D. Flood Fill 区间DP 或lcs匹配

    题意 给定一串数字 相同的连续的数字可以同时 转换成一个相同数字 问最小几次可以全部转换成一个相同的数字 法1:区间dp  dp[l][r][0/1]  0表示l r区间转化成和最左边相同需要多少次 ...

  6. Codeforces 1114D Flood Fill (区间DP or 最长公共子序列)

    题意:给你n个颜色块,颜色相同并且相邻的颜色块是互相连通的(连通块).你可以改变其中的某个颜色块的颜色,不过每次改变会把它所在的连通块的颜色也改变,问最少需要多少次操作,使得n个颜色块的颜色相同. 例 ...

  7. codeforces1114D. Flood Fill(区间Dp)

    传送门: 解题思路: 区间Dp,发现某一个区间修改后区间颜色一定为左边或右边的颜色. 那么只需要设方程$f_(l,r,0/1)$表示区间$[l,r]$染成左/右颜色的最小代价 转移就是枚举左右颜色就好 ...

  8. CodeForces - 1114D-Flood Fill (区间dp)

    You are given a line of nn colored squares in a row, numbered from 11 to nn from left to right. The  ...

  9. CF 149D Coloring Brackets 区间dp ****

    给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2.每对括号必须只能给其中的一个上色 3.相邻的两个不能上同色,可以都不上色 求0-len-1这一区间内 ...

随机推荐

  1. 使用Java 编写FTP中的长传文件和下载文件

    实现FTP文件上传与下载可以通过以下两种种方式实现(不知道还有没有其他方式,),分别为:1.通过JDK自带的API实现:2.通过Apache提供的API是实现. 第一种方法:通过JDK自带的API实现 ...

  2. Java基础之二十 并发

    20.1 并发得多面性 并发编程令人困惑的一个主要原因:使用并发时需要解决的问题有多个,而实现并发的方法也有多种,并且在这两者之间没有明显的映射关系. 20.1.1 更快的执行 速度问题初听起来很简单 ...

  3. Zabbix编译安装(全)

    一.前言 (一).概述 Zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案,Zabbix能监视各种网络参数,保证服务器系统的安全运营:并提供灵活的通知机制以让系 ...

  4. kylin Retrieving hive dependency...

    由于公司环境配置hive默认连接hiveserver2 ,不管hive cli 还是beeline cli都默认使用beeline cli,连接hive需要输入账号密码; 启动kylin 时会Retr ...

  5. 简易数据分析 09 | Web Scraper 自动控制抓取数量 & Web Scraper 父子选择器

    这是简易数据分析系列的第 9 篇文章. 今天我们说说 Web Scraper 的一些小功能:自动控制 Web Scraper 抓取数量和 Web Scraper 的父子选择器. 如何只抓取前 100 ...

  6. NOIP 2018旅行题解

    从佳木斯回来刷一刷去年没A的题 题目描述 小 Y 是一个爱好旅行的 OIer.她来到 X 国,打算将各个城市都玩一遍. 小Y了解到, X国的 nn 个城市之间有 mm 条双向道路.每条双向道路连接两个 ...

  7. mysql docker 主从配置

    主从复制相关 前置条件: docker安装的mysql是5.7.26版本 1. 编排docker-compose文件如下: version: '3' services: mysql-master: v ...

  8. Selenium+java - 截图操作

    写在前面 自动化测试过程中,运行失败截图可以很好的帮我们定位问题,因此,截图操作也是我们自动化测试中的一个重要环节. 截图方法 1.通过截图类TakeScreenshout实现截图 特点:截取浏览器窗 ...

  9. Java泛型使用的简单介绍

    目录 一. 泛型是什么 二. 使用泛型有什么好处 三. 泛型类 四. 泛型接口 五. 泛型方法 六. 限定类型变量 七. 泛型通配符 7.1 上界通配符 7.2 下界通配符 7.3 无限定通配符 八. ...

  10. Zookeeper的命令行操作(三)

    Zookeeper的命令行操作 1. ZooKeeper服务命令 在准备好相应的配置之后,可以直接通过zkServer.sh 这个脚本进行服务的相关操作 1. 启动ZK服务: sh bin/zkSer ...