题目描述

给定一个表示分数的非负整数数组。 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,……。每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。

给定一个表示分数的数组,预测玩家1是否会成为赢家。你可以假设每个玩家的玩法都会使他的分数最大化。

示例 1:

输入: [1, 5, 2]

输出: False

解释: 一开始,玩家1可以从1和2中进行选择。

如果他选择2(或者1),那么玩家2可以从1(或者2)和5中进行选择。如果玩家2选择了5,那么玩家1则只剩下1(或者2)可选。

所以,玩家1的最终分数为 1 + 2 = 3,而玩家2为 5。

因此,玩家1永远不会成为赢家,返回 False。

示例 2:

输入: [1, 5, 233, 7]

输出: True

解释: 玩家1一开始选择1。然后玩家2必须从5和7中进行选择。无论玩家2选择了哪个,玩家1都可以选择233。

最终,玩家1(234分)比玩家2(12分)获得更多的分数,所以返回 True,表示玩家1可以成为赢家。

解题思路

这一题用动态规划来解决。

对于原数组A[0,….,n-1],我们定义

dp[i][j]表示原数组中从i到j的这么多数中,按照游戏规则,某个玩家所能获得的最大分数。

假设这个分数此时属于palyer1,那么dp[i+1][j]或者dp[i][j-1]表示player2玩家所能获得的最大分数。因为对于player1来讲,他第一次选择要么是第i个数,要么是第j个数,所以对于player2来讲,就分两种情况取最大。

另外我们设从i到j的所有数的和是sum[i,j],则可以得到递推公式(核心!):

dp[i][j]=max(sum[i+1][j]-dp[i+1][j]+nums[i], sum[i][j-1]-dp[i][j-1]+nums[j]) 。

这个需要好好想想!其实不难!

化简一下:

dp[i][j]=max(sum[i][j]-dp[i+1][j], sum[i][j]-dp[i][j-1]) 。

但是写代码实现时,我们要注意:

首先要得到dp[i][i]的值,之后依次得到:

dp[0][1],dp[1,2],dp[2,3]…dp[n-2][n-1]

之后再得到dp[0][2],dp[1][3],…

即长度由短变长的顺序来遍历

class Solution {
public:
bool PredictTheWinner(vector<int>& nums) {
int len = nums.size(),i,j,dp[len][len],sum[len][len];
for(i = 0; i < len; i++){
dp[i][i] = nums[i];
sum[i][i] = nums[i];
} for(i = 0; i < len-1; i++){
dp[i][i+1] = max(dp[i][i],dp[i+1][i+1]);
sum[i][i+1] = nums[i]+nums[i+1];
} for(i = 2; i < len; i++){ // i表示长度
for(j = 0; j < len-i; j++){ // j表示左端
sum[j][j+i] = sum[j][j+i-1]+nums[j+i];
dp[j][j+i] = max(sum[j][j+i]-dp[j][j+i-1],sum[j][j+i]-dp[j+1][j+i]);
}
}
if(dp[0][len-1] >= sum[0][len-1]-dp[0][len-1])
return true;
else
return false; }
};

leetcode 486 预测赢家的更多相关文章

  1. Java实现 LeetCode 486 预测赢家

    486. 预测赢家 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,--.每次一个玩家只能拿取一个分数,分数被拿取之后不再可 ...

  2. 每日一题-——LeetCode(486) 预测赢家

    题目描述: 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,…….每次一个玩家只能拿取一个分数,分数被拿取之后不再可取.直到 ...

  3. 每日一题 LeetCode 486. 预测赢家 【递推】【前缀和】【动态规划】

    题目链接 https://leetcode-cn.com/problems/predict-the-winner/ 题目说明 题解 主要方法:递推:动态规划:前缀和 解释说明: 求前缀和 pre_nu ...

  4. Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)

    Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...

  5. [LeetCode] 486. Predict the Winner 预测赢家

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  6. 486 Predict the Winner 预测赢家

    给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,…….每次一个玩家只能拿取一个分数,分数被拿取之后不再可取.直到没有剩余分数 ...

  7. [LeetCode] Predict the Winner 预测赢家

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  8. [Swift]LeetCode486. 预测赢家 | Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  9. 随手练——博弈论入门 leetcode - 486. Predict the Winner

    题目链接:https://leetcode.com/problems/predict-the-winner/ 1.暴力递归 当前数组左边界:i,右边界:j: 对于先发者来说,他能取到的最大值是:max ...

随机推荐

  1. Spring 注解方式引入配置文件

    配置文件,我以两种为例,一种是引入Spring的XML文件,另外一种是.properties的键值对文件: 一.引入Spring XML的注解是@ImportResource @Retention(R ...

  2. Java类MemoryUsage查看虚拟机的使用情况

    原文地址:https://www.cnblogs.com/xubiao/p/5465473.html Java类MemoryUsage,通过MemoryUsage可以查看Java 虚拟机的内存池的内存 ...

  3. [转]使用C#调用cmd来执行sql脚本

    本文转自:https://blog.csdn.net/tvmerp/article/details/1822669 下面是使用C#调用cmd来执行osql实现脚本的执行. using System; ...

  4. Windows操作系统下Redis服务安装图文详解

    Redis下载地址:https://github.com/MSOpenTech/redis/releases 下载msi格式的安装文件. 1.运行安装程序,单击next按钮. 2.勾选接受许可协议中的 ...

  5. oracle的学习笔记(转)

    Oracle的介绍 1. Oracle的创始人----拉里•埃里森 2. oracle的安装 [连接Oracle步骤](](https://img2018.cnblogs.com/blog/12245 ...

  6. Vue脚手架

    https://cli.vuejs.org/zh/guide/ Vue CLI 是一个基于 Vue.js 进行快速开发的完整系统,提供: 通过 @vue/cli 搭建交互式的项目脚手架. 通过 @vu ...

  7. CSS 关于屏幕适配REM

    这里不多说了,想详细了解的可以参考 2350305682 的博客 https://www.cnblogs.com/annie211/p/8118857.html 不想多深究,想先实现的看这(移动端): ...

  8. 设计模式原则(1)--Single Responsibility Principle(SRP)--单一职责原则

    1.定义: 不要存在多于一个导致类变更的原因.通俗的说,即一个类只负责一项职责.  2.使用场景: 如果类A有两个职责:d1,d2.当职责d1需要修改时,可能会导致原本运行正常的职责d2功能产生问题. ...

  9. 【代码笔记】iOS-performSelector

    代码: - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view. se ...

  10. 【读书笔记】iOS-网络-优化请求性能

    一,度量网络性能 1,网络带宽 用于描述无线网络性能的最常见度量指标就是带宽.在数字无线通信中,网络带宽可以描述为两个端点之间的通信通道每秒钟可以传输的位数.现代无线网络所能提供的理论带宽是很高的.不 ...