poj  1185(状态压缩DP)

题意:在一个N*M的矩阵中,‘H'表示不能放大炮,’P'表示可以放大炮,大炮能攻击到沿横向左右各两格,沿纵向上下各两格,现在要放尽可能多的大炮使得,大炮之间不能相互攻击。

解析:可以发现,对于每一行放大炮的状态,只与它上面一行和上上一行的状态有关,每一行用状态压缩的表示方法,0表示不

放大炮,1表示放大炮,同样的,先要满足硬件条件,即有的地方不能放大炮,然后就是每一行中不能有两个1的距离小于

2(保证横着不互相攻击),这些要预先处理一下。然后就是状态表示和转移的问题了,因为是和前两行的状态有关,所以要开

个三维的数组来表示状态,当前行的状态可由前两行的状态转移而来。即如果当前行的状态符合前两行的约束条件(不和前两

行的大炮互相攻击),则当前行的最大值就是上一个状态的值加上当前状态中1的个数(当前行放大炮的个数)

状态表示:dp[i][j][k] 表示第i行状态为k,第i-1状态为j时的最大炮兵个数。

状态转移方程:dp[i][j][k] =max(dp[i][j][k],dp[i-1][l][j]+cot[k]); cot[k]为k状态中1的个数 ,可用位运算求得

DP边界条件:dp[1][0][i] =cot[i] 状态i能够满足第一行的硬件条件

AC代码如下:

 #include<stdio.h>
int sta[<<],cot[<<],cur[],dp[][][];
char g[][];
int n,m,num;
int max(int a,int b)
{
return a>b?a:b;
}
void init() //预处理所有可能出现的状态
{
int i,tmp,sum,count;
num=;
sum=<<m;
for(i=;i<sum;i++)
{
if(i&(i<<) || i&(i<<)) //同一行中1的距离不能小于2
continue;
sta[num]=i;
count=;
tmp=i;
while(tmp) //求该状态中的二进制表示中1的个数
{
count++;
tmp&=(tmp-); //将最低位的1化为0
}
cot[num++]=count;
}
}
int fit(int x,int y) //判断上下两行对应位置是否同为1
{
if(x&y)
return ;
return ;
}
void DP()
{
int i,j,k,l;
for(i=;i<num;i++) //预处理第1行的情况
{
if(!fit(sta[i],cur[]))
continue;
dp[][][i]=cot[i];
}
for(i=;i<=n;i++)
{
for(j=;j<num;j++)
for(k=;k<num;k++)
{
if(!fit(sta[k],cur[i]) || !fit(sta[j],cur[i-]) || !fit(sta[k],sta[j])) //排除不符合条件的状态
continue;
for(l=;l<num;l++)
{
if(!fit(sta[l],cur[i-]) || !fit(sta[k],sta[l]) || !fit(sta[j],sta[l]) || !dp[i-][l][j]) //排除不符合条件的状态
continue;
dp[i][j][k]=max(dp[i][j][k],dp[i-][l][j]+cot[k]); //状态转移
}
}
}
int ans=;
for(i=;i<=n;i++) //求最多放置多少大炮
for(j=;j<num;j++)
for(k=;k<num;k++)
ans=max(ans,dp[i][j][k]);
printf("%d\n",ans);
}
int main()
{
int i,j;
char c;
scanf("%d%d",&n,&m);
for(i=;i<=n;i++)
{
getchar();
for(j=;j<=m;j++)
{
scanf("%c",&c);
if(c=='H') //用二进制表示不能放置大炮的情况,便于判断
cur[i]+=<<(m-j); //网上大多数的题解都是cur[i]+=1<<(j-1);反过来了,我表示很不理解,但是能AC =_=||~~~
}
}
init();
DP();
return ;
}

poj 1185(状态压缩DP)的更多相关文章

  1. POJ 1185 状态压缩DP 炮兵阵地

    题目直达车:   POJ 1185 炮兵阵地 分析: 列( <=10 )的数据比较小, 一般会想到状压DP. Ⅰ.如果一行10全个‘P’,满足题意的状态不超过60种(可手动枚举). Ⅱ.用DFS ...

  2. POJ 1185 状态压缩DP(转)

    1. 为何状态压缩: 棋盘规模为n*m,且m≤10,如果用一个int表示一行上棋子的状态,足以表示m≤10所要求的范围.故想到用int s[num].至于开多大的数组,可以自己用DFS搜索试试看:也可 ...

  3. poj 2923(状态压缩dp)

    题意:就是给了你一些货物的重量,然后给了两辆车一次的载重,让你求出最少的运输次数. 分析:首先要从一辆车入手,搜出所有的一次能够运的所有状态,然后把两辆车的状态进行合并,最后就是解决了,有两种方法: ...

  4. poj 2688 状态压缩dp解tsp

    题意: 裸的tsp. 分析: 用bfs求出随意两点之间的距离后能够暴搜也能够用next_permutation水,但效率肯定不如状压dp.dp[s][u]表示从0出发訪问过s集合中的点.眼下在点u走过 ...

  5. Mondriaan's Dream(POJ 2411状态压缩dp)

    题意:用1*2的方格填充m*n的方格不能重叠,问有多少种填充方法 分析:dp[i][j]表示i行状态为j时的方案数,对于j,0表示该列竖放(影响下一行的该列),1表示横放成功(影响下一列)或上一列竖放 ...

  6. poj 2411 状态压缩dp

    思路:将每一行看做一个二进制位,那么所有的合法状态为相邻为1的个数一定要为偶数个.这样就可以先把所有的合法状态找到.由于没一层的合法状态都是一样的,那么可以用一个数组保存.由第i-1行到第i行的状态转 ...

  7. poj 3254 状态压缩DP

    思路:把每行的数当做是一个二进制串,0不变,1变或不变,找出所有的合法二进制形式表示的整数,即相邻不同为1,那么第i-1行与第i行的状态转移方程为dp[i][j]+=dp[i-1][k]: 这个方程得 ...

  8. poj 1185 状态压缩

    炮兵阵地 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 27926   Accepted: 10805 Descriptio ...

  9. POJ 3254 状态压缩 DP

    B - Corn Fields Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:65536KB    ...

随机推荐

  1. ubuntu 图形化界面 gui 桌面版 root登录 sorry,that didn't work.please try again! 抱歉,认证失败。请重试

    出现这种问题,用下面的方法就行了 https://jingyan.baidu.com/article/bad08e1e224b2709c85121f1.html 而且我发现,因为我用的是英文版的ubu ...

  2. SSIS 变量、参数和表达式

    动态包对象包括变量,参数和表达式.变量主要为包提供一种对象之间相互通信的方法,变量的值是可以更新的.而参数不同于变量,参数的值在包中是不能修改的,只能通过外部来设置参数.表达式可以引用变量.参数.常量 ...

  3. [转载]在Windows下为PHP5.6安装redis扩展和memcached扩展

    一.php安装redis扩展   1.使用phpinfo()函数查看PHP的版本信息,这会决定扩展文件版本       2.根据PHP版本号,编译器版本号和CPU架构, 选择php_redis-2.2 ...

  4. 【转】阿里云Linux系统被攻击的处理过程

    4-22日 19:48分,在等女儿跳舞下课的时候,在“多看”进入大刘等人的<毁灭之城:地球碎块>,读到了“诅咒 3.0”病毒出现的时候,阿里云发来短信“尊敬的用户,您的云服务器x.x.x. ...

  5. pytest使用笔记(二)——pytest+allure配置使用

    使用环境及预置条件 开发工具:pycharm 操作系统:win10 开发语言:python3.6 使用库:pytest4.0,pytest-allure-adaptor 注意不要安装allure-py ...

  6. opengl坐标系统

    概述 为了将坐标从一个坐标系变换到另一个坐标系,我们需要用到几个变换矩阵,最重要的几个分别是模型(Model).观察(View).投影(Projection)三个矩阵.我们的顶点坐标起始于局部空间(L ...

  7. 戴尔win10重新安装win7系统

    戴尔v5468电脑win10重装回win7系统 首先是公司需要用到ie8来执行公司的项目维护,都是很早之前的项目了,因为是对接政府相关的业务,不怎么有把握对项目进行稳定更新,所以我就为这个ie8操碎了 ...

  8. IEEE1588 verision 2 报文介绍

    PTP 报文 PTP verision 2 报文是由 报头 / header,主体 / body 和 报尾 / suffix 组成,报尾长度可能为 0 ; PTP verision 2 报文在 ver ...

  9. Netty源码分析第8章(高性能工具类FastThreadLocal和Recycler)---->第1节: FastThreadLocal的使用和创建

    Netty源码分析第八章: 高性能工具类FastThreadLocal和Recycler 概述: FastThreadLocal我们在剖析堆外内存分配的时候简单介绍过, 它类似于JDK的ThreadL ...

  10. nodejs ejs模板数据库操作

    1. 建立数据连接setting.js var settings = {}; settings.db = { host: 'localhost', user: 'root', password: '1 ...