https://stats385.github.io/readings

Lecture 1 – Deep Learning Challenge. Is There Theory?

Readings

  1. Deep Deep Trouble
  2. Why 2016 is The Global Tipping Point...
  3. Are AI and ML Killing Analyticals...
  4. The Dark Secret at The Heart of AI
  5. AI Robots Learning Racism...
  6. FaceApp Forced to Pull ‘Racist' Filters...
  7. Losing a Whole Generation of Young Men to Video Games

Lecture 2 – Overview of Deep Learning From a Practical Point of View

Readings

  1. Emergence of simple cell
  2. ImageNet Classification with Deep Convolutional Neural Networks (Alexnet)
  3. Very Deep Convolutional Networks for Large-Scale Image Recognition (VGG)
  4. Going Deeper with Convolutions (GoogLeNet)
  5. Deep Residual Learning for Image Recognition (ResNet)
  6. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
  7. Visualizing and Understanding Convolutional Neural Networks

Blogs

  1. An Intuitive Guide to Deep Network Architectures
  2. Neural Network Architectures

Videos

  1. Deep Visualization Toolbox

Lecture 3

Readings

  1. A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction
  2. Energy Propagation in Deep Convolutional Neural Networks
  3. Discrete Deep Feature Extraction: A Theory and New Architectures
  4. Topology Reduction in Deep Convolutional Feature Extraction Networks

Lecture 4

Readings

  1. A Probabilistic Framework for Deep Learning
  2. Semi-Supervised Learning with the Deep Rendering Mixture Model
  3. A Probabilistic Theory of Deep Learning

Lecture 5

Readings

  1. Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review
  2. Learning Functions: When is Deep Better Than Shallow

Lecture 6

Readings

  1. Convolutional Patch Representations for Image Retrieval: an Unsupervised Approach
  2. Convolutional Kernel Networks
  3. Kernel Descriptors for Visual Recognition
  4. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks
  5. Learning with Kernels
  6. Kernel Based Methods for Hypothesis Testing

Lecture 7

Readings

  1. Geometry of Neural Network Loss Surfaces via Random Matrix Theory
  2. Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice
  3. Nonlinear random matrix theory for deep learning

Lecture 8

Readings

  1. Deep Learning without Poor Local Minima
  2. Topology and Geometry of Half-Rectified Network Optimization
  3. Convexified Convolutional Neural Networks
  4. Implicit Regularization in Matrix Factorization

Lecture 9

Readings

  1. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  2. Perception as an inference problem
  3. A Neurobiological Model of Visual Attention and Invariant Pattern Recognition Based on Dynamic Routing of Information

Lecture 10

Readings

  1. Working Locally Thinking Globally: Theoretical Guarantees for Convolutional Sparse Coding
  2. Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
  3. Multi-Layer Convolutional Sparse Modeling: Pursuit and Dictionary Learning
  4. Convolutional Dictionary Learning via Local Processing

To be discussed and extra

Theories of Deep Learning的更多相关文章

  1. (转) Deep Learning in a Nutshell: Reinforcement Learning

    Deep Learning in a Nutshell: Reinforcement Learning   Share: Posted on September 8, 2016by Tim Dettm ...

  2. Machine and Deep Learning with Python

    Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstiti ...

  3. The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near

    The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near ...

  4. Decision Boundaries for Deep Learning and other Machine Learning classifiers

    Decision Boundaries for Deep Learning and other Machine Learning classifiers H2O, one of the leading ...

  5. What are some good books/papers for learning deep learning?

    What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, ...

  6. (转)Understanding Memory in Deep Learning Systems: The Neuroscience, Psychology and Technology Perspectives

    Understanding Memory in Deep Learning Systems: The Neuroscience, Psychology and Technology Perspecti ...

  7. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  8. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  9. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

随机推荐

  1. Red Hat7.2 上安装 MySQL5.5.58

    1.首先查看linux版本:cat /etc/redhat-release Red Hat Enterprise Linux Server release 7.2 (Maipo) 2.Linux查看版 ...

  2. 【highstock】按时间(zoom)让它去访问服务器呢?

    $(function () { /** * Load new data depending on the selected min and max */ function afterSetExtrem ...

  3. 【转载】Mysql主从复制、和MySQL集群(主主复制)

    转载:https://www.cnblogs.com/phpstudy2015-6/p/6485819.html 请同时参考和结合这篇文件进行处理:https://blog.csdn.net/envo ...

  4. ASP.NET 动态查找数据 并且生成xml文档 同时使用xslt转换为xhtml

    前言 xsl是一门标签解析语言,很适合做动态网页的前台标签 www.bamn.cn 1 首先是aspx页面 添加一个输入框 按钮 还有一个用来显示解析后的xhtml代码的控件 <form id= ...

  5. React(0.13) 定义一个动态的组件

    1.因为jsx将两个花括号之间的内容渲染为动态值,只需要引用对应的变量即可 <!DOCTYPE html> <html> <head> <title>R ...

  6. 富文本编辑器 CKeditor 配置使用

    作者:Tyler Ning出处:http://www.cnblogs.com/tylerdonet/本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连 ...

  7. getOutputStream() 的问题

    小谢叫我看一下01服务器上的医药平台,说抛了很多异常出来,看一下,大部分都是因为登录的时候验证码那个JSP页面抛出的getOutputStream() has already been called ...

  8. 【转】编辑器与IDE

    编辑器与IDE 无谓的编辑器战争 很多人都喜欢争论哪个编辑器是最好的.其中最大的争论莫过于 Emacs 与 vi 之争.vi 的支持者喜欢说:“看 vi 打起字来多快,手指完全不离键盘,连方向键都可以 ...

  9. idea设置tomcat虚拟路径的两种方法

    1.使用tomcat自己的虚拟路径 1.1.在tomcat\config\server.xml中配置 path="/upload" 虚拟路径 E:\photo\upload 图片存 ...

  10. 编写 T4 文本模板

    文本模板由以下部件组成: 1)指令 - 控制模板处理方式的元素. 2)文本块 - 直接复制到输出的内容. 3)控制块 - 向文本插入可变值并控制文本的条件或重复部件的程序代码. 指令: 指令是控制模板 ...