https://stats385.github.io/readings

Lecture 1 – Deep Learning Challenge. Is There Theory?

Readings

  1. Deep Deep Trouble
  2. Why 2016 is The Global Tipping Point...
  3. Are AI and ML Killing Analyticals...
  4. The Dark Secret at The Heart of AI
  5. AI Robots Learning Racism...
  6. FaceApp Forced to Pull ‘Racist' Filters...
  7. Losing a Whole Generation of Young Men to Video Games

Lecture 2 – Overview of Deep Learning From a Practical Point of View

Readings

  1. Emergence of simple cell
  2. ImageNet Classification with Deep Convolutional Neural Networks (Alexnet)
  3. Very Deep Convolutional Networks for Large-Scale Image Recognition (VGG)
  4. Going Deeper with Convolutions (GoogLeNet)
  5. Deep Residual Learning for Image Recognition (ResNet)
  6. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
  7. Visualizing and Understanding Convolutional Neural Networks

Blogs

  1. An Intuitive Guide to Deep Network Architectures
  2. Neural Network Architectures

Videos

  1. Deep Visualization Toolbox

Lecture 3

Readings

  1. A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction
  2. Energy Propagation in Deep Convolutional Neural Networks
  3. Discrete Deep Feature Extraction: A Theory and New Architectures
  4. Topology Reduction in Deep Convolutional Feature Extraction Networks

Lecture 4

Readings

  1. A Probabilistic Framework for Deep Learning
  2. Semi-Supervised Learning with the Deep Rendering Mixture Model
  3. A Probabilistic Theory of Deep Learning

Lecture 5

Readings

  1. Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review
  2. Learning Functions: When is Deep Better Than Shallow

Lecture 6

Readings

  1. Convolutional Patch Representations for Image Retrieval: an Unsupervised Approach
  2. Convolutional Kernel Networks
  3. Kernel Descriptors for Visual Recognition
  4. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks
  5. Learning with Kernels
  6. Kernel Based Methods for Hypothesis Testing

Lecture 7

Readings

  1. Geometry of Neural Network Loss Surfaces via Random Matrix Theory
  2. Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice
  3. Nonlinear random matrix theory for deep learning

Lecture 8

Readings

  1. Deep Learning without Poor Local Minima
  2. Topology and Geometry of Half-Rectified Network Optimization
  3. Convexified Convolutional Neural Networks
  4. Implicit Regularization in Matrix Factorization

Lecture 9

Readings

  1. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  2. Perception as an inference problem
  3. A Neurobiological Model of Visual Attention and Invariant Pattern Recognition Based on Dynamic Routing of Information

Lecture 10

Readings

  1. Working Locally Thinking Globally: Theoretical Guarantees for Convolutional Sparse Coding
  2. Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
  3. Multi-Layer Convolutional Sparse Modeling: Pursuit and Dictionary Learning
  4. Convolutional Dictionary Learning via Local Processing

To be discussed and extra

Theories of Deep Learning的更多相关文章

  1. (转) Deep Learning in a Nutshell: Reinforcement Learning

    Deep Learning in a Nutshell: Reinforcement Learning   Share: Posted on September 8, 2016by Tim Dettm ...

  2. Machine and Deep Learning with Python

    Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstiti ...

  3. The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near

    The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near ...

  4. Decision Boundaries for Deep Learning and other Machine Learning classifiers

    Decision Boundaries for Deep Learning and other Machine Learning classifiers H2O, one of the leading ...

  5. What are some good books/papers for learning deep learning?

    What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, ...

  6. (转)Understanding Memory in Deep Learning Systems: The Neuroscience, Psychology and Technology Perspectives

    Understanding Memory in Deep Learning Systems: The Neuroscience, Psychology and Technology Perspecti ...

  7. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  8. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  9. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

随机推荐

  1. ASP.NET WebForm Form表单如何实现MVC那种“自动装配”效果呢?

    我们知道ASP.NET MVC有个强大的地方就是Form表单提交到action的时候,可以直接将Form的参数直接装配到action的参数实体对象中 比如 action方法 Register(User ...

  2. HTML 5 应用程序缓存(Application Cache)cache manifest 文件使用 html5 中创建manifest缓存以及更新方法 一个manifest文件会创建一份缓存,不同的manifest文件其缓存的内容是互不干扰的

    HTML5 离线缓存-manifest简介 HTML 5 应用程序缓存 使用 HTML5,通过创建 cache manifest 文件,可以轻松地创建 web 应用的离线版本. 什么是应用程序缓存(A ...

  3. 【Spring】spring的7个模块

    Spring 是一个开源框架,是为了解决企业应用程序开发复杂性而创建的.框架的主要优势之一就是其分层架构,分层架构允许您选择使用哪一个组件,同时为 J2EE 应用程序开发提供集成的框架. Spring ...

  4. Lomboz插件

    2008年05月20日 星期二 下午 01:47 Lomboz是Eclipse的一个主要的开源插件(open-source plug-in),Lomboz插件能够使Java开发者更好的使用Eclips ...

  5. MySQL加载配置文件的顺序

    MySQL5.6启动时,按照下表,从上往下的顺序加载配置文件: File Name Purpose /etc/my.cnf Global options /etc/mysql/my.cnf Globa ...

  6. 利用 PowerShell 分析SharePoint WebApplication 体系结构

    之前一篇文章<两张图看清SharePoint 2013 Farm 逻辑体系结构>谈到Web Application,Content Database,Site Collection的关系. ...

  7. 安装和配置SharePoint 2013 Workflow

    SharePoint 2013中的工作流概述 在SharePoint 2013中,Workflow(建立在Windows Workflow Foundation 4.5)和WCF承载在Workflow ...

  8. The password supplied with the username Domain\UserName was not correct. Verify that it was entered correctly and try again

    起因 今天想进入SharePoint 2013 Central Administration创建一个WebApplication,尽然发生了错误: The password supplied with ...

  9. stm8 时钟输出引脚

    CLK_CCO引脚是STM8的时钟输出引脚,若设置该脚输出主时钟Fmaster,时钟输出寄存器可以进行如下操作 CLK->CCOR=0X19;

  10. ASTER:An Attentional Scene Text Recognizer with Flexible Rectification

    代码链接:https://github.com/bgshih/aster 方法概述 本文方法主要解决不规则排列文字的文字识别问题,论文为之前一篇CVPR206的paper(Robust Scene T ...