[问题2015S03] 复旦高等代数 II(14级)每周一题(第四教学周)
[问题2015S03] 设 \(g(x)=x^n+a_1x^{n-1}+\cdots+a_{n-1}x+a_n\) 是数域 \(\mathbb{K}\) 上的多项式, \(V\) 是 \(\mathbb{K}\) 上的 \(n\) 维线性空间, \(\varphi\) 是 \(V\) 上的线性变换, \(\alpha_1\neq 0,\alpha_2,\cdots,\alpha_n\) 是 \(V\) 中的向量, 满足 \[\varphi(\alpha_1)=\alpha_2,\,\varphi(\alpha_2)=\alpha_3,\,\cdots,\,\varphi(\alpha_{n-1})=\alpha_n,\,\varphi(\alpha_n)=-a_n\alpha_1-a_{n-1}\alpha_2-\cdots-a_1\alpha_n.\] 证明: 若 \(g(x)\) 在 \(\mathbb{K}\) 上不可约, 则 \(\{\alpha_1,\alpha_2,\cdots,\alpha_n\}\) 是 \(V\) 的一组基. 举例说明: 若 \(g(x)\) 在 \(\mathbb{K}\) 上可约, 则上述结论一般并不成立.
问题解答请在以下网址下载:http://pan.baidu.com/share/home?uk=103502710#category/type=0
[问题2015S03] 复旦高等代数 II(14级)每周一题(第四教学周)的更多相关文章
- [问题2015S01] 复旦高等代数 II(14级)每周一题(第二教学周)
[问题2015S01] 设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, ...
- [问题2015S08] 复旦高等代数 II(14级)每周一题(第九教学周)
[问题2015S08] 设 \(A\) 为 \(n\) 阶复方阵, 证明: \(A\overline{A}\) 与 \(\overline{A}A\) 相似, 其中 \(\overline{A}\) ...
- [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)
问题2014S01 设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...
- [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)
[问题2014S09] 证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...
- [问题2014A07] 复旦高等代数 I(14级)每周一题(第九教学周)
[问题2014A07] 设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mat ...
- [问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)
问题2014S02 设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) ...
- [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)
[问题2014S12] 设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...
- 复旦高等代数 II(17级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...
- 复旦高等代数II(18级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...
随机推荐
- Javascript算术运算
Javascript中Math对像的一些复杂算术运算方法: Math.pow(2,53) //2的53次幂 结果:9007199254740992 Math.round(0.6) //0.6四舍五 ...
- 浅谈java性能分析
浅谈java性能分析,效能分析 在老师强烈的要求下做了效能分析,对上次写过的词频统计的程序进行分析以及改进. 对于效能分析:我个人很浅显的认为就是程序的运行效率,代码的执行效率等等. java做性能测 ...
- Windows下如何安装Python的第三方库
有下面几个办法: 1. 通过http://www.lfd.uci.edu/~gohlke/pythonlibs/这个网站, 下载whl文件, 解压之后会有三个文件夹, 将最短名字的那个文件夹复制到C: ...
- 【iCore3 双核心板_FPGA】例程十三:FSMC总线通信实验——复用地址模式
实验指导书及代码包下载: http://pan.baidu.com/s/1nuYpI8x iCore3 购买链接: https://item.taobao.com/item.htm?id=524229 ...
- js中的回调函数的理解和使用方法
js中的回调函数的理解和使用方法 一. 回调函数的作用 js代码会至上而下一条线执行下去,但是有时候我们需要等到一个操作结束之后再进行下一个操作,这时候就需要用到回调函数. 二. 回调函数的解释 因为 ...
- php5-fpm.sock failed (13: Permission denied) error
In order to fix the php5-fpm.sock failed error follow these instructions 1) Make sure your virtual h ...
- define宏定义和const常变量区别
1.define是宏定义,程序在预处理阶段将用define定义的内容进行了替换.因此程序运行时,常量表中并没有用define定义的常量,系统不为它分配内存.const定义的常量,在程序运行时在常量表中 ...
- toggle函数
$(function() { $('.love').toggle(function() { $(this).attr("src", "images/loved.png&q ...
- in-list iterator
in-list iterator --针对目标sql的in后面是常量集合的首选项处理方法,其处理效率通常都会比in-list expansion高--使用in-list iterator的时候,in所 ...
- javascript 事件的一点感悟
javascript 冒泡事件的理解一般是这样的: 比方页面上有一个BODY里面包含一个DIV,DIV中包含一个BUTTON.在BODY,DIV,BUTTON中都有一个ONCLICK事件,在BUTTO ...