[问题2015S03] 复旦高等代数 II(14级)每周一题(第四教学周)
[问题2015S03] 设 \(g(x)=x^n+a_1x^{n-1}+\cdots+a_{n-1}x+a_n\) 是数域 \(\mathbb{K}\) 上的多项式, \(V\) 是 \(\mathbb{K}\) 上的 \(n\) 维线性空间, \(\varphi\) 是 \(V\) 上的线性变换, \(\alpha_1\neq 0,\alpha_2,\cdots,\alpha_n\) 是 \(V\) 中的向量, 满足 \[\varphi(\alpha_1)=\alpha_2,\,\varphi(\alpha_2)=\alpha_3,\,\cdots,\,\varphi(\alpha_{n-1})=\alpha_n,\,\varphi(\alpha_n)=-a_n\alpha_1-a_{n-1}\alpha_2-\cdots-a_1\alpha_n.\] 证明: 若 \(g(x)\) 在 \(\mathbb{K}\) 上不可约, 则 \(\{\alpha_1,\alpha_2,\cdots,\alpha_n\}\) 是 \(V\) 的一组基. 举例说明: 若 \(g(x)\) 在 \(\mathbb{K}\) 上可约, 则上述结论一般并不成立.
问题解答请在以下网址下载:http://pan.baidu.com/share/home?uk=103502710#category/type=0
[问题2015S03] 复旦高等代数 II(14级)每周一题(第四教学周)的更多相关文章
- [问题2015S01] 复旦高等代数 II(14级)每周一题(第二教学周)
[问题2015S01] 设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, ...
- [问题2015S08] 复旦高等代数 II(14级)每周一题(第九教学周)
[问题2015S08] 设 \(A\) 为 \(n\) 阶复方阵, 证明: \(A\overline{A}\) 与 \(\overline{A}A\) 相似, 其中 \(\overline{A}\) ...
- [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)
问题2014S01 设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...
- [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)
[问题2014S09] 证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...
- [问题2014A07] 复旦高等代数 I(14级)每周一题(第九教学周)
[问题2014A07] 设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mat ...
- [问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)
问题2014S02 设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) ...
- [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)
[问题2014S12] 设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...
- 复旦高等代数 II(17级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...
- 复旦高等代数II(18级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...
随机推荐
- ios-系统警告框 跳转到设置里面
-(void)createUIAlertIphone:(NSString*)title { UIAlertController * alert =[UIAlertController alertCon ...
- shell读取文件每行,并执行命令
#!/bin/bash while read line do $line & done < /path/filename
- Splay树-Codevs 1296 营业额统计
Codevs 1296 营业额统计 题目描述 Description Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司 ...
- 【java基础学习】线程
线程 1. 两种创建方式(继承Thread类和实现Runnable接口) 2. 线程共享资源(建议实现Runnable接口,其好处是:1.多线程之间可以共享资源 2.避免单继承带来的问题 3.数据和代 ...
- 经验分享:Xcode 创建.a和framework静态库【转】
作者:Haley_Wong 最近因为项目中的聊天SDK,需要封装成静态库,所以实践了一下创建静态库的步骤,做下记录. 库介绍 库从本质上来说是一种可执行代码的二进制格式,可以被载入内存中执行.库分静态 ...
- angularJs指令执行的机制==大概的三个阶段
第一阶段:加载阶段 angularJs要运行的话,需要去等待angular.js加载完成,加载完之后呢,angular就会去查找到ng-app这个指令,ng-app在每个应用里面只能出现一次, 它也就 ...
- iOS 1-2年经验面试参考题
Model层: 数据持久化存储方案有哪些? 沙盒的目录结构是怎样的?各自一般用于什么场合? SQL语句问题:inner join.left join.right join的区别是什么? SQLite的 ...
- elasticsearch使用操作部分
本片文章记录了elasticsearch概念.特点.集群.插件.API使用方法. 1.elasticsearch的概念及特点.概念:elasticsearch是一个基于lucene的搜索服务器.luc ...
- 转载 Servlet3.0中使用注解配置Servle
转载地址:http://www.108js.com/article/article10/a0021.html?id=1496 开发Servlet3的程序需要一定的环境支持.Servlet3是Java ...
- 一款bootstrap树形js
http://www.htmleaf.com/Demo/201502141380.html