HDOJ-1069(动态规划+排序+嵌套矩形问题)
Monkey and Banana
HDOJ-1069
- 这里实际是嵌套矩形问题的变式,也就是求不固定起点的最长路径
- 动态转移方程为:dp[i]=max(dp[j]+block[i].h|(i,j)∈map),这里的dp[i]表示从i块出发的可以构建的最大的高度。
- 首先需要构建出图map,表示一块是否可以搭建在另一块上面。
- 还有一个问题就是需要进行排序,我是按照面积进行从小到大排序的。如果不排序,可能AC不了。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std;
int n;
int cnt;//实际所有的块数
struct node{
int x;
int y;
int h;
node(){};
node(int x1,int y1,int h1):x(x1),y(y1),h(h1){}
bool operator<(const node& t)const{
return x*y<t.x*t.y;
}
};
node block[90];
//vector<node> map[99];
int map[99][99];
int dp[99];//dp[i]表示从i出发可以达到的最高高度
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int k=0;
while(cin>>n&&n){
cnt=0;
int x,y,z;
for(int i=0;i<n;i++){
cin>>x>>y>>z;
block[cnt++]=node(x,y,z);
block[cnt++]=node(x,z,y);
block[cnt++]=node(y,z,x);
}
sort(block,block+cnt);//一定要排序
for(int i=0;i<cnt;i++){
for(int j=0;j<cnt;j++){
if((block[i].x>block[j].x&&block[i].y>block[j].y)||(block[i].x>block[j].y&&block[i].y>block[j].x)){
map[i][j]=1;
}else{
map[i][j]=0;
}
}
}
for(int i=0;i<cnt;i++)
dp[i]=block[i].h;
int maxs=0;
for(int i=0;i<cnt;i++){
dp[i]=block[i].h;//这里一定要初始化为它相应的高度,因为从这一块开始出发,其实高度必须是它自己本身的高度
for(int j=0;j<i;j++){
if(map[i][j]){//j可以放在i上面
dp[i]=max(dp[i],dp[j]+block[i].h);
}
}
maxs=max(dp[i],maxs);
//cout<<dp[i]<<endl;
}
cout<<"Case "<<++k<<": maximum height = "<<maxs<<endl;
//cout<<maxs<<endl;
}
return 0;
}
HDOJ-1069(动态规划+排序+嵌套矩形问题)的更多相关文章
- DAG上的动态规划之嵌套矩形
题意描述:有n个矩形,每个矩形可以用两个整数a.b描述,表示它的长和宽, 矩形(a,b)可以嵌套在矩形(c,d)当且仅当a<c且b<d, 要求选出尽量多的矩形排成一排,使得除了最后一个外, ...
- CJOJ 1070 【Uva】嵌套矩形(动态规划 图论)
CJOJ 1070 [Uva]嵌套矩形(动态规划 图论) Description 有 n 个矩形,每个矩形可以用两个整数 a, b 描述,表示它的长和宽.矩形 X(a, b) 可以嵌套在矩形 Y(c, ...
- DAG上的动态规划---嵌套矩形(模板题)
一.DAG的介绍 Directed Acyclic Graph,简称DAG,即有向无环图,有向说明有方向,无环表示不能直接或间接的指向自己. 摘录:有向无环图的动态规划是学习动态规划的基础,很多问题都 ...
- NYOJ16|嵌套矩形|DP|DAG模型|记忆化搜索
矩形嵌套 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a& ...
- P1375 嵌套矩形
题目Problem 嵌套矩形 Time Limit: 1000ms Memory Limit: 131072KB 描述Descript. 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形 ...
- 嵌套矩形——DAG上的动态规划
有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.非常多问题都能够转化为DAG上的最长路.最短路或路径计数问题. 题目描写叙述: 有n个矩形,每一个矩 ...
- [ACM_动态规划] 嵌套矩形
问题描述:有n个矩阵,每个矩阵可以用两个整数a,b来表示 ,表示他的长和宽,矩阵X (a,b) 可以 嵌套 到Y (c,d) 里面当且仅当 a < c && b < d ...
- HDU 1069 基础动态规划+排序
题意 给出n种立方体石头 当且仅当一块石头的底部宽度长度都小于一块石头的时候才能放在上面 问最高能放多高?石头不限数目 然而同样一种石头采用同样的摆放方式 两快相同石头一定无法进行放置 所以 一块石头 ...
- 02_嵌套矩形(DAG最长路问题)
来源:刘汝佳<算法竞赛入门经典--训练指南> P60 问题2: 问题描述:有n个矩形,每个矩形可以用两个整数a,b描述,表示它们的长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中的条件 ...
随机推荐
- P1251 餐巾计划 (网络流)
题意:餐厅每天会需要用Ri块新的餐巾 用完后也会产生Ri块旧的餐巾 每天购买新的餐巾单价p元 每天产出的旧餐巾可以送到快洗部花费每张c1元 在i + v1天可以使用 也可以花费c2元每张送到慢洗部 在 ...
- AcWing 241.楼兰图腾 (树状数组,逆序对)
题意:在二维坐标轴上给你一些点,求出所有由三个点构成的v和∧图案的个数. 题解:因为给出的点是按横坐标的顺序给出的,所以我们可以先遍历然后求出某个点左边比它高和低的点的个数(这个过程简直和用树状数组求 ...
- 如何在windows上升级Powershell到5.1版本?
前言 此篇我们说的是Powershell5.1低版本到5.1的升级,对于Powershell6(及以上版本)可以跨平台独立安装,在windows上可与之前的版本并存. 首先要整清楚Powershell ...
- rabbitmq常见面试题
1.使用RabbitMQ有什么好处?1.解耦,系统A在代码中直接调用系统B和系统C的代码,如果将来D系统接入,系统A还需要修改代码,过于麻烦! 2.异步,将消息写入消息队列,非必要的业务逻辑以异步的方 ...
- docker的FAQ
1.Docker能在非Linux平台(Windows+MacOS)上运行吗? 答:可以 2 .如何将一台宿主机的docker环境迁移到另外一台宿主机? 答:停止Docker服务,将整个docker存储 ...
- BZOJ3211 花神游历各国(分块 区间开根号)
题意:给n个数,可以进行两种操作:给区间[l,r]每个数开方向下取整:算区间[l,r]的和. 思路:我们可以知道,一个数一直开方下去,就会变成0或者1,然后就不会变了.那么当一个区间只剩0或1时,就不 ...
- AbstractQueuedSynchronizer的使用和juc里的相关类的解析
对AQS进行解析后,先来实现两个简单的基于AQS的类,然后再解析juc里基于AQS构造的类. 1.基于AQS的类的示例 首先先看这个类,这个类是<Java并发编程实战>的一个示例,AQS源 ...
- webpack async load modules & dynamic code splitting
webpack async load modules & dynamic code splitting webpack 按需/异步加载/Code Splitting webpack loade ...
- macOS & Nginx
macOS & Nginx ngnix # 使用 brew 安装(如果没有 brew 命令,需要自行安装 brew) $ brew install nginx $ nginx -h # 查看 ...
- js 生成Excel
https://www.npmjs.com/package/xlsx 安装依赖 npm install xlsx Example import * as XLSX from "xlsx&qu ...