51Nod 1242 斐波那契数列的第N项(矩阵快速幂)
#include <iostream>
#include <algorithm>
using namespace std; typedef long long LL;
const int maxn = ;
const LL m = ; struct Matrix
{
LL v[maxn][maxn];
}; //矩阵间的乘法
Matrix matrix_mul(Matrix A, Matrix B){
Matrix ans;
for (int i = ; i < maxn; i++){
for (int j = ; j < maxn; j++){
ans.v[i][j] = ;
for (int k = ; k < maxn; k++){
ans.v[i][j] += (A.v[i][k] * B.v[k][j]) % m;
}
ans.v[i][j] %= m;
}
}
return ans;
} Matrix matrix_pow(Matrix C, LL n){
Matrix ans = { , , , };
while (n){
if (n & ){
ans = matrix_mul(ans, C);
}
C = matrix_mul(C, C);
n >>= ;
}
return ans;
} int main(){
ios::sync_with_stdio(false); LL n;
cin >> n;
Matrix e = { , , , };
Matrix ee = { , , , };
Matrix ans = matrix_pow(ee, n - );
ans = matrix_mul(e, ans);
cout << ans.v[][] << endl;
//system("pause");
return ;
}
51Nod 1242 斐波那契数列的第N项(矩阵快速幂)的更多相关文章
- (矩阵快速幂)51NOD 1242斐波那契数列的第N项
斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, ...
- 51nod 1242 斐波那契数列的第N项
之前一直没敢做矩阵一类的题目 其实还好吧 推荐看一下 : http://www.cnblogs.com/SYCstudio/p/7211050.html 但是后面的斐波那契 推导不是很懂 前面讲的挺 ...
- 51nod 1242 斐波那契数列的第N项——数学、矩阵快速幂
普通算法肯定T了,所以怎么算呢?和矩阵有啥关系呢? 打数学符号太费时,就手写了: 所以求Fib(n)就是求矩阵 | 1 1 |n-1 第一行第一列的元素. | 1 0 | 其实学过线代 ...
- HDU 1005 Number Sequence【斐波那契数列/循环节找规律/矩阵快速幂/求(A * f(n - 1) + B * f(n - 2)) mod 7】
Number Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- 1242 斐波那契数列的第N项
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F( ...
- 51 Nod 1242 斐波那契数列的第N项(矩阵快速幂模板题)
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) ...
- 51Nod——T 1242 斐波那契数列的第N项
https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1242 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 ...
- HDOJ 4549 M斐波那契数列 费马小定理+矩阵高速幂
MF( i ) = a ^ fib( i-1 ) * b ^ fib ( i ) ( i>=3) mod 1000000007 是质数 , 依据费马小定理 a^phi( p ) = 1 ( ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
随机推荐
- Java版TicTacToe
MainFrame.java package com.bu_ish; import java.awt.BorderLayout; import java.awt.Color; import java. ...
- 使用Scapy回放报文pcap
一.准备环境: Ubuntu + python2.7 sudo apt-get install python-scapy 二.准备报文: 先抓取一些报文,本实验使用的是DHCP的报文. 文件-导出 ...
- appium(13)- server config
//本文讲解:启动server时,如何配置capabilities 和 flag.可以将不同client端需要的通用的capabilities都放到server端配置. Requirements In ...
- [haoi2015]T1
题意:给定你一颗树,要求你在这棵树中确定K个黑点和N-K个白点,使黑点间与白点间两两距离之和最大,输出最大值.n<=2000 对于这道题,我想了好几个思路,包括点分治,贪心,动规,网络流等等,实 ...
- Java内存模型(JMM)中的happens-before
happens-before是JMM中最核心的概念,对于Java程序员来说,理解happens-before是理解JMM的关键 . 1.JMM的设计 首先,来看看JMM的设计意图.从JMM的设计者的角 ...
- 为什要使用预编译SQL?
今天在研发部技术大牛的指点下,我终于明白了为什么要使用SQL预编译的形式执行数据库JDBC:
- python操作oracle数据库
本文主要介绍python对oracle数据库的操作学习 包含:oracle数据库在Windows操作系统下的安装和配置.python需要安装的第三方拓展包以及基本操作的样例学习. 1 ...
- Linux-打包和文件系统
1 文件后缀 在Linux中后缀没有实际意义 2 打包文件 tar c 创建一个归档 v 查看过程 f 指定文件名 t 列出归档内容 x 从归档中解压出文件 C 改变到哪个目录 z gzip压缩 j ...
- 「CQOI2007」「BZOJ1260」涂色paint (区间dp
1260: [CQOI2007]涂色paint Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 2057 Solved: 1267[Submit][St ...
- bzoj 2006 [NOI2010]超级钢琴——ST表+堆
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2006 每个右端点的左端点在一个区间内:用堆记录端点位置.可选区间,按价值排序:拿出一个后也许 ...