Proof of Theorem 20.3

Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metric \(d\) and the square metric \(\rho\) are the same as the product topology on \(\mathbb{R}^n\).

Proof: a) Prove the two metrics can mutually limit each other.

Because
\[
\rho(\vect{x}, \vect{y}) = \max_{1 \leq i \leq n} \abs{x_i - y_i} = \left( \max_{1 \leq i \leq n} (x_i - y_i)^2 \right)^{\frac{1}{2}}
\]
and the scalar function \(f(x) = x^{\frac{1}{2}}\) is increasing when \(x \geq 0\), then from
\[
\max_{1 \leq i \leq n} (x_i - y_i)^2 \leq \sum_{i=1}^n (x_i - y_i)^2,
\]
we have
\[
\left( \max_{1 \leq i \leq n} (x_i - y_i)^2 \right)^{\frac{1}{2}} \leq \left( \sum_{i=1}^n (x_i - y_i)^2 \right)^{\frac{1}{2}}.
\]
Hence,
\[
\rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}).
\]
Meanwhile,
\[
\left( \sum_{i=1}^n (x_i - y_i)^2 \right)^{\frac{1}{2}} \leq \left( n \max_{1 \leq i \leq n} (x_i - y_i)^2 \right)^{\frac{1}{2}} = \left( n \left( \max_{1 \leq i \leq n} \abs{x_i - y_i} \right)^2 \right)^{\frac{1}{2}}.
\]
Therefore,
\[
d(\vect{x}, \vect{y}) \leq \sqrt{n} \rho(\vect{x}, \vect{y}).
\]
Summarize the above we have
\[
\rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}) \leq \sqrt{n} \rho(\vect{x}, \vect{y})
\]
and its equivalent form
\[
\frac{1}{\sqrt{n}} d(\vect{x}, \vect{y}) \leq \rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}).
\]
b) Prove the two metrics generate the same topology.

For all \(\vect{x} \in \mathbb{R}^n\) and \(\varepsilon > 0\), because \(d(\vect{x}, \vect{y}) \leq \sqrt{n} \rho(\vect{x}, \vect{y})\), if we let \(\sqrt{n} \rho(\vect{x}, \vect{y}) < \varepsilon\), we also have \(d(\vect{x}, \vect{y}) < \varepsilon\). This means the open ball \(B_{\rho}(\vect{x}, \frac{\varepsilon}{\sqrt{n}})\) in the topology induced by \(\rho\) is contained in the open ball \(B_d(\vect{x}, \varepsilon)\) in the topology induced by \(d\). So the square metric topology is finer than the euclidean metric topology according to Lemma 20.2.

Meanwhile, by letting \(\rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}) < \varepsilon\), we have the open ball \(B_d(\vect{x}, \varepsilon)\) being contained in the open ball \(B_{\rho}(\vect{x}, \varepsilon)\), which proves the euclidean metric topology is finer than the square metric topology.

Therefore, the two metrics generate the same topology.

Comment It can be seen that when a certain open ball radius is given, the larger the metric being defined, the smaller the open ball in the sense of set inclusion or cardinality.

c) Prove the topology induced by \(\rho\) is the same as the product topology on \(\mathbb{R}^n\).

Let \(\vect{B} = \prod_{i=1}^n (a_i, b_i)\) be a basis element for \(\mathbb{R}^n\) with the product topology. For all \(\vect{x} \in \vect{B}\) and \(i \in \{1, \cdots ,n\}\), there exists an \(\varepsilon_i > 0\) such that \(x_i \in (x_i - \varepsilon_i, x_i + \varepsilon_i) \subset (a_i, b_i)\). Let \(\varepsilon = \min_{1 \leq i \leq n} \{ \varepsilon_i\}\), we have \(x_i \in (x_i - \varepsilon, x_i + \varepsilon) \subset (a_i, b_i)\). Because \(B_{\rho}(\vect{x}, \varepsilon) = \prod_{i=1}^n (x_i - \varepsilon, x_i + \varepsilon)\), we have \(\vect{x} \in B_{\rho}(\vect{x}, \varepsilon) \subset \vect{B}\). Hence, the square metric topology is finer than the product topology on \(\mathbb{R}^n\).

On the other hand, let \(B_{\rho}(\vect{x}, \varepsilon)\) be an arbitrary open ball in \(\mathbb{R}^n\) with the square metric topology, it is itself a basis element for the product topology. Therefore, the product topology is finer than the square metric topology.

Finally, the two metrics generate the same topology as the product topology on \(\mathbb{R}^n\).

Comment It should be noted that although \(B_{\rho}(\vect{x}, \varepsilon) = \prod_{i=1}^n (x_i - \varepsilon, x_i + \varepsilon)\), we do not have \(B_{\bar{\rho}}(\vect{x}, \varepsilon) = \prod_{i=1}^{\infty} (x_i - \varepsilon, x_i + \varepsilon)\), where \(\bar{\rho}\) is the uniform metric on \(\mathbb{R}^{\omega}\). This point has been mentioned in this post.

Remark This theorem can be generalized as below.

If any two metrics \(d_1\) and \(d_2\) on a space \(X\) can be mutually limited, i.e. for all \(x\) and \(y\) in \(X\), there exist positive constants \(C_1\) and \(C_2\) such that \(C_1 d_1(x, y) \leq d_2(x, y) \leq C_2 d_1(x, y)\), then the two metrics induce the same topology on \(X\).

Then, these two metrics are considered to be equivalent in a topological sense and such “equivalence” can be understood like this. We have already known in this post that in a topological space, the concept of convergence is defined based on using a collection of nested open sets as rulers for “distance” measurement, when there is still no metric established. The equivalence of two metrics in a topological sense just means that the convergence behaviors in the topological spaces induced from these two metrics are the same.

Examples of equivalent metrics

In linear algebra, we have already witnessed examples of equivalent metrics, which are induced from corresponding norms for vectors or matrices.

For all \(\vect{x} \in \mathbb{R}^n\), the following is a list of commonly adopted vector norms:

  1. 1-norm: \(\norm{\vect{x}}_1 = \sum_{i = 1}^n \abs{x_i}\).
  2. 2-norm: \(\norm{\vect{x}}_2 = \left( \sum_{i=1}^n \abs{x_i}^2 \right)^{\frac{1}{2}}\).
  3. \(\infty\)-norm: \(\norm{\vect{x}}_{\infty} = \max_{1 \leq i \leq n} \abs{x_i}\).

It is easy to prove that these norms are equivalent as below, which implies the equivalence of their induced metrics and also the induced topologies on \(\mathbb{R}^n\).
\[
\begin{align*}
\norm{\vect{x}}_{\infty} \leq & \norm{\vect{x}}_1 \leq n \norm{\vect{x}}_{\infty} \\
\norm{\vect{x}}_{\infty} \leq & \norm{\vect{x}}_2 \leq \sqrt{n} \norm{\vect{x}}_{\infty} \\
\frac{1}{\sqrt{n}} \norm{\vect{x}}_2 \leq & \norm{\vect{x}}_1 \leq n \norm{\vect{x}}_2
\end{align*}.
\]
Based on the definition of vector norms, the corresponding norms for matrices, which are treated as linear operators on vector space, can also be induced. For all \(A \in \mathbb{R}^{n \times n}\), possible matrix norms are

  1. 1-norm: \(\norm{A}_1 = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A \vect{x}}_1}{\norm{\vect{x}}_1} = \max_{1 \leq j \leq n} \sum_{i=1}^n \abs{a_{ij}}\), which is the maximum column sum;
  2. 2-norm: \(\norm{A}_2 = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A \vect{x}}_2}{\norm{\vect{x}}_2} = \sqrt{\rho(A^T A)}\), where \(\rho\) represents the spectral radius, i.e. the maximum eigenvalue of \(A^TA\);
  3. \(\infty\)-norm: \(\norm{A}_{\infty} = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A \vect{x}}_{\infty}}{\norm{\vect{x}}_{\infty}} = \max_{1 \leq i \leq n} \sum_{j=1}^n \abs{a_{ij}}\), which is the maximum row sum.

The equivalence of these matrix norms can be directly derived from the equivalence of vector norms. For example, because \(\norm{A\vect{x}}_1 \leq n \norm{A\vect{x}}_2\) and \(\norm{\vect{x}}_1 \geq \frac{1}{\sqrt{n}} \norm{\vect{x}}_2\), we have
\[
\frac{\norm{A\vect{x}}_1}{\norm{\vect{x}}_1} \leq \frac{n \norm{A\vect{x}}_2}{\frac{1}{\sqrt{n}}\norm{\vect{x}}_2} = n\sqrt{n}\frac{\norm{A\vect{x}}_2}{\norm{\vect{x}}_2}.
\]
From \(\norm{A\vect{x}}_1 \geq \frac{1}{\sqrt{n}} \norm{A\vect{x}}_2\) and \(\norm{\vect{x}}_1 \leq n \norm{\vect{x}}_2\), we have
\[
\frac{1}{n\sqrt{n}}\frac{\norm{A\vect{x}}_2}{\norm{\vect{x}}_2} \leq \frac{\norm{A\vect{x}}_1}{\norm{\vect{x}}_1}.
\]
By taking supremum operation on both sides of the two inequalities,
\[
\frac{1}{n\sqrt{n}} \norm{A}_2 \leq \norm{A}_1 \leq n\sqrt{n} \norm{A}_2.
\]
Similarly, we also have
\[
\begin{align*}
\frac{1}{n} \norm{A}_{\infty} \leq & \norm{A}_1 \leq n \norm{A}_{\infty} \\
\frac{1}{\sqrt{n}} \norm{A}_{\infty} \leq & \norm{A}_2 \leq \sqrt{n} \norm{A}_{\infty}
\end{align*}.
\]
The equivalence of matrix norms implies the equivalence of their induced metrics and topologies on \(\mathbb{R}^{n \times n}\).

James Munkres Topology: Theorem 20.3 and metric equivalence的更多相关文章

  1. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  2. James Munkres Topology: Theorem 19.6

    Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...

  3. James Munkres Topology: Theorem 16.3

    Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...

  4. James Munkres Topology: Sec 18 Exer 12

    Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...

  5. James Munkres Topology: Lemma 21.2 The sequence lemma

    Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...

  6. James Munkres Topology: Sec 22 Exer 6

    Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...

  7. James Munkres Topology: Sec 22 Exer 3

    Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...

  8. James Munkres Topology: Sec 37 Exer 1

    Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...

  9. James Munkres Topology: Sec 22 Example 1

    Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...

随机推荐

  1. CF350E 【Wrong Floyd】

    Description 给定n个点,m条边,k个标记点,hack掉给出的程序. Solution 先考虑不可能hack掉的情况.当所有点都是标记点的时候肯定不能hack掉,也就是\(n=k\).还有就 ...

  2. JWT 加密

    什么是JWT Json web token (JWT), 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准((RFC 7519).该token被设计为紧凑且安全的,特别适用于分布式站点 ...

  3. Django 中的static文件的设置

    STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static'), ('article',os.path.jo ...

  4. Python并发编程之多线程使用

    目录 一 开启线程的两种方式 二 在一个进程下开启多个线程与在一个进程下开启多个子进程的区别 三 练习 四 线程相关的其他方法 五 守护线程 六 Python GIL(Global Interpret ...

  5. golang-flag的问题

    如果选择-flag x 就是不支持布尔型

  6. docker 基础之监控

    docker容器监控命令 docker ps 命令(查看所有的运行中的容器) docker stats 命令(容器状态监控) [root@bogon ~]# docker stats containe ...

  7. 老男孩Python全栈学习 S9 日常作业 009

    1.写函数,检查获取传入列表或元组对象的所有奇数位索引对应的元素,并将其作为新列表返回给调用者. def func1(List): List2 = [] for num in range(len(Li ...

  8. 多模块项目Module must not contain source root. The root already belongs to module

    多模块项目Module "*" must not contain source root *. The root already belongs to module "* ...

  9. Jenkins实践之入门体验

    官网:https://jenkins.io/ 持续集成,快速发布是DevOps实践的最好方式. 目录 准备工作 下载/安装/启动 基础配置 插件配置 构建第一个Java项目 部署项目 准备工作 在使用 ...

  10. mysql数据库 删除某几个字段相同的重复记录并根据另一字段留下一条记录

    1.例如Mysql数据库中表a中的记录,id=2,id=6,id=7的记录是重复的(iId,cId等多个字段相同),现在想留下id最小(id=2)或最大(id=7)的一条记录