Proof of Theorem 20.3

Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metric \(d\) and the square metric \(\rho\) are the same as the product topology on \(\mathbb{R}^n\).

Proof: a) Prove the two metrics can mutually limit each other.

Because
\[
\rho(\vect{x}, \vect{y}) = \max_{1 \leq i \leq n} \abs{x_i - y_i} = \left( \max_{1 \leq i \leq n} (x_i - y_i)^2 \right)^{\frac{1}{2}}
\]
and the scalar function \(f(x) = x^{\frac{1}{2}}\) is increasing when \(x \geq 0\), then from
\[
\max_{1 \leq i \leq n} (x_i - y_i)^2 \leq \sum_{i=1}^n (x_i - y_i)^2,
\]
we have
\[
\left( \max_{1 \leq i \leq n} (x_i - y_i)^2 \right)^{\frac{1}{2}} \leq \left( \sum_{i=1}^n (x_i - y_i)^2 \right)^{\frac{1}{2}}.
\]
Hence,
\[
\rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}).
\]
Meanwhile,
\[
\left( \sum_{i=1}^n (x_i - y_i)^2 \right)^{\frac{1}{2}} \leq \left( n \max_{1 \leq i \leq n} (x_i - y_i)^2 \right)^{\frac{1}{2}} = \left( n \left( \max_{1 \leq i \leq n} \abs{x_i - y_i} \right)^2 \right)^{\frac{1}{2}}.
\]
Therefore,
\[
d(\vect{x}, \vect{y}) \leq \sqrt{n} \rho(\vect{x}, \vect{y}).
\]
Summarize the above we have
\[
\rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}) \leq \sqrt{n} \rho(\vect{x}, \vect{y})
\]
and its equivalent form
\[
\frac{1}{\sqrt{n}} d(\vect{x}, \vect{y}) \leq \rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}).
\]
b) Prove the two metrics generate the same topology.

For all \(\vect{x} \in \mathbb{R}^n\) and \(\varepsilon > 0\), because \(d(\vect{x}, \vect{y}) \leq \sqrt{n} \rho(\vect{x}, \vect{y})\), if we let \(\sqrt{n} \rho(\vect{x}, \vect{y}) < \varepsilon\), we also have \(d(\vect{x}, \vect{y}) < \varepsilon\). This means the open ball \(B_{\rho}(\vect{x}, \frac{\varepsilon}{\sqrt{n}})\) in the topology induced by \(\rho\) is contained in the open ball \(B_d(\vect{x}, \varepsilon)\) in the topology induced by \(d\). So the square metric topology is finer than the euclidean metric topology according to Lemma 20.2.

Meanwhile, by letting \(\rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}) < \varepsilon\), we have the open ball \(B_d(\vect{x}, \varepsilon)\) being contained in the open ball \(B_{\rho}(\vect{x}, \varepsilon)\), which proves the euclidean metric topology is finer than the square metric topology.

Therefore, the two metrics generate the same topology.

Comment It can be seen that when a certain open ball radius is given, the larger the metric being defined, the smaller the open ball in the sense of set inclusion or cardinality.

c) Prove the topology induced by \(\rho\) is the same as the product topology on \(\mathbb{R}^n\).

Let \(\vect{B} = \prod_{i=1}^n (a_i, b_i)\) be a basis element for \(\mathbb{R}^n\) with the product topology. For all \(\vect{x} \in \vect{B}\) and \(i \in \{1, \cdots ,n\}\), there exists an \(\varepsilon_i > 0\) such that \(x_i \in (x_i - \varepsilon_i, x_i + \varepsilon_i) \subset (a_i, b_i)\). Let \(\varepsilon = \min_{1 \leq i \leq n} \{ \varepsilon_i\}\), we have \(x_i \in (x_i - \varepsilon, x_i + \varepsilon) \subset (a_i, b_i)\). Because \(B_{\rho}(\vect{x}, \varepsilon) = \prod_{i=1}^n (x_i - \varepsilon, x_i + \varepsilon)\), we have \(\vect{x} \in B_{\rho}(\vect{x}, \varepsilon) \subset \vect{B}\). Hence, the square metric topology is finer than the product topology on \(\mathbb{R}^n\).

On the other hand, let \(B_{\rho}(\vect{x}, \varepsilon)\) be an arbitrary open ball in \(\mathbb{R}^n\) with the square metric topology, it is itself a basis element for the product topology. Therefore, the product topology is finer than the square metric topology.

Finally, the two metrics generate the same topology as the product topology on \(\mathbb{R}^n\).

Comment It should be noted that although \(B_{\rho}(\vect{x}, \varepsilon) = \prod_{i=1}^n (x_i - \varepsilon, x_i + \varepsilon)\), we do not have \(B_{\bar{\rho}}(\vect{x}, \varepsilon) = \prod_{i=1}^{\infty} (x_i - \varepsilon, x_i + \varepsilon)\), where \(\bar{\rho}\) is the uniform metric on \(\mathbb{R}^{\omega}\). This point has been mentioned in this post.

Remark This theorem can be generalized as below.

If any two metrics \(d_1\) and \(d_2\) on a space \(X\) can be mutually limited, i.e. for all \(x\) and \(y\) in \(X\), there exist positive constants \(C_1\) and \(C_2\) such that \(C_1 d_1(x, y) \leq d_2(x, y) \leq C_2 d_1(x, y)\), then the two metrics induce the same topology on \(X\).

Then, these two metrics are considered to be equivalent in a topological sense and such “equivalence” can be understood like this. We have already known in this post that in a topological space, the concept of convergence is defined based on using a collection of nested open sets as rulers for “distance” measurement, when there is still no metric established. The equivalence of two metrics in a topological sense just means that the convergence behaviors in the topological spaces induced from these two metrics are the same.

Examples of equivalent metrics

In linear algebra, we have already witnessed examples of equivalent metrics, which are induced from corresponding norms for vectors or matrices.

For all \(\vect{x} \in \mathbb{R}^n\), the following is a list of commonly adopted vector norms:

  1. 1-norm: \(\norm{\vect{x}}_1 = \sum_{i = 1}^n \abs{x_i}\).
  2. 2-norm: \(\norm{\vect{x}}_2 = \left( \sum_{i=1}^n \abs{x_i}^2 \right)^{\frac{1}{2}}\).
  3. \(\infty\)-norm: \(\norm{\vect{x}}_{\infty} = \max_{1 \leq i \leq n} \abs{x_i}\).

It is easy to prove that these norms are equivalent as below, which implies the equivalence of their induced metrics and also the induced topologies on \(\mathbb{R}^n\).
\[
\begin{align*}
\norm{\vect{x}}_{\infty} \leq & \norm{\vect{x}}_1 \leq n \norm{\vect{x}}_{\infty} \\
\norm{\vect{x}}_{\infty} \leq & \norm{\vect{x}}_2 \leq \sqrt{n} \norm{\vect{x}}_{\infty} \\
\frac{1}{\sqrt{n}} \norm{\vect{x}}_2 \leq & \norm{\vect{x}}_1 \leq n \norm{\vect{x}}_2
\end{align*}.
\]
Based on the definition of vector norms, the corresponding norms for matrices, which are treated as linear operators on vector space, can also be induced. For all \(A \in \mathbb{R}^{n \times n}\), possible matrix norms are

  1. 1-norm: \(\norm{A}_1 = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A \vect{x}}_1}{\norm{\vect{x}}_1} = \max_{1 \leq j \leq n} \sum_{i=1}^n \abs{a_{ij}}\), which is the maximum column sum;
  2. 2-norm: \(\norm{A}_2 = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A \vect{x}}_2}{\norm{\vect{x}}_2} = \sqrt{\rho(A^T A)}\), where \(\rho\) represents the spectral radius, i.e. the maximum eigenvalue of \(A^TA\);
  3. \(\infty\)-norm: \(\norm{A}_{\infty} = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A \vect{x}}_{\infty}}{\norm{\vect{x}}_{\infty}} = \max_{1 \leq i \leq n} \sum_{j=1}^n \abs{a_{ij}}\), which is the maximum row sum.

The equivalence of these matrix norms can be directly derived from the equivalence of vector norms. For example, because \(\norm{A\vect{x}}_1 \leq n \norm{A\vect{x}}_2\) and \(\norm{\vect{x}}_1 \geq \frac{1}{\sqrt{n}} \norm{\vect{x}}_2\), we have
\[
\frac{\norm{A\vect{x}}_1}{\norm{\vect{x}}_1} \leq \frac{n \norm{A\vect{x}}_2}{\frac{1}{\sqrt{n}}\norm{\vect{x}}_2} = n\sqrt{n}\frac{\norm{A\vect{x}}_2}{\norm{\vect{x}}_2}.
\]
From \(\norm{A\vect{x}}_1 \geq \frac{1}{\sqrt{n}} \norm{A\vect{x}}_2\) and \(\norm{\vect{x}}_1 \leq n \norm{\vect{x}}_2\), we have
\[
\frac{1}{n\sqrt{n}}\frac{\norm{A\vect{x}}_2}{\norm{\vect{x}}_2} \leq \frac{\norm{A\vect{x}}_1}{\norm{\vect{x}}_1}.
\]
By taking supremum operation on both sides of the two inequalities,
\[
\frac{1}{n\sqrt{n}} \norm{A}_2 \leq \norm{A}_1 \leq n\sqrt{n} \norm{A}_2.
\]
Similarly, we also have
\[
\begin{align*}
\frac{1}{n} \norm{A}_{\infty} \leq & \norm{A}_1 \leq n \norm{A}_{\infty} \\
\frac{1}{\sqrt{n}} \norm{A}_{\infty} \leq & \norm{A}_2 \leq \sqrt{n} \norm{A}_{\infty}
\end{align*}.
\]
The equivalence of matrix norms implies the equivalence of their induced metrics and topologies on \(\mathbb{R}^{n \times n}\).

James Munkres Topology: Theorem 20.3 and metric equivalence的更多相关文章

  1. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  2. James Munkres Topology: Theorem 19.6

    Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...

  3. James Munkres Topology: Theorem 16.3

    Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...

  4. James Munkres Topology: Sec 18 Exer 12

    Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...

  5. James Munkres Topology: Lemma 21.2 The sequence lemma

    Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...

  6. James Munkres Topology: Sec 22 Exer 6

    Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...

  7. James Munkres Topology: Sec 22 Exer 3

    Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...

  8. James Munkres Topology: Sec 37 Exer 1

    Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...

  9. James Munkres Topology: Sec 22 Example 1

    Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...

随机推荐

  1. VO、DTO、DO、PO

    领域模型中的实体类可细分为4种类型:VO.DTO.DO.PO. PO(Persistent Object):持久化对象,表示持久层的数据结构(如数据库表): DO(Domain Object):领域对 ...

  2. Beyas定理

    \(Beyas\)定理 首先由条件概率的计算式有 \[Pr\{A|B\}=\frac{Pr\{A\cap B\}}{Pr\{B\}}\] 结合交换律得到 \[Pr\{A\cap B\}=Pr\{B\} ...

  3. jsp:forward动作功能

    jsp:forward动作:引导请求者进入新的页面 例子:login.jsp <center><p>用户登录 </p> <form name="fo ...

  4. Java基础--面向对象编程4(多态)

    1.多态的概念 多态是指程序中的同一引用类型,使用不同的实例而执行结果不同的. 同一个类型:一般指父类 不同的实例:不同的子类实例 执行结果不同:针对同一方法执行的结果不同 package cn.sx ...

  5. Apache Hadoop 2.9.2 的归档案例剖析

    Apache Hadoop 2.9.2 的归档案例剖析 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.   能看到这篇文章说明你对NameNode 工作原理是有深入的理解啦!我们知道 ...

  6. 使用Docker安装Nginx

    启动命令 docker run -d -p : --name nginx -v $PWD/nginx.conf:/etc/nginx/nginx.conf -v $PWD/conf.d/:/etc/n ...

  7. Linux系统GNOME主题安装与Tweaks工具使用

    需要软件: GNOME Tweaks--使主题修改更加容易一个工具 安装主题: 下载主题:mac themes下载链接:https://www.gnome-look.org/p/1241688/ 这里 ...

  8. 毕业设计——django中的render()与redirect()问题

    1. redirect()时需要传递数据,在网上找到的方法是通过session传递数据,但是个人认为用session传递数据并不合适,session一般用于权限验证数据的传递... 2. render ...

  9. Webpack友好的错误提示插件friendly-errors-webpack-plugin

    Friendly-errors-webpack-plugin 介绍 Friendly-errors-webpack-plugin识别某些类别的webpack错误,并清理,聚合和优先级,以提供更好的开发 ...

  10. Git学习(一):初始化仓库、添加文件、版本回退

    目录 Git学习(一):初始化.添加文件.版本回退 初始化一个仓库 添加文件到Git仓库 版本回退 Git学习(一):初始化.添加文件.版本回退 初始化一个仓库 本文使用的命令行工具为cmder,部分 ...