James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3
Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metric \(d\) and the square metric \(\rho\) are the same as the product topology on \(\mathbb{R}^n\).
Proof: a) Prove the two metrics can mutually limit each other.
Because
\[
\rho(\vect{x}, \vect{y}) = \max_{1 \leq i \leq n} \abs{x_i - y_i} = \left( \max_{1 \leq i \leq n} (x_i - y_i)^2 \right)^{\frac{1}{2}}
\]
and the scalar function \(f(x) = x^{\frac{1}{2}}\) is increasing when \(x \geq 0\), then from
\[
\max_{1 \leq i \leq n} (x_i - y_i)^2 \leq \sum_{i=1}^n (x_i - y_i)^2,
\]
we have
\[
\left( \max_{1 \leq i \leq n} (x_i - y_i)^2 \right)^{\frac{1}{2}} \leq \left( \sum_{i=1}^n (x_i - y_i)^2 \right)^{\frac{1}{2}}.
\]
Hence,
\[
\rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}).
\]
Meanwhile,
\[
\left( \sum_{i=1}^n (x_i - y_i)^2 \right)^{\frac{1}{2}} \leq \left( n \max_{1 \leq i \leq n} (x_i - y_i)^2 \right)^{\frac{1}{2}} = \left( n \left( \max_{1 \leq i \leq n} \abs{x_i - y_i} \right)^2 \right)^{\frac{1}{2}}.
\]
Therefore,
\[
d(\vect{x}, \vect{y}) \leq \sqrt{n} \rho(\vect{x}, \vect{y}).
\]
Summarize the above we have
\[
\rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}) \leq \sqrt{n} \rho(\vect{x}, \vect{y})
\]
and its equivalent form
\[
\frac{1}{\sqrt{n}} d(\vect{x}, \vect{y}) \leq \rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}).
\]
b) Prove the two metrics generate the same topology.
For all \(\vect{x} \in \mathbb{R}^n\) and \(\varepsilon > 0\), because \(d(\vect{x}, \vect{y}) \leq \sqrt{n} \rho(\vect{x}, \vect{y})\), if we let \(\sqrt{n} \rho(\vect{x}, \vect{y}) < \varepsilon\), we also have \(d(\vect{x}, \vect{y}) < \varepsilon\). This means the open ball \(B_{\rho}(\vect{x}, \frac{\varepsilon}{\sqrt{n}})\) in the topology induced by \(\rho\) is contained in the open ball \(B_d(\vect{x}, \varepsilon)\) in the topology induced by \(d\). So the square metric topology is finer than the euclidean metric topology according to Lemma 20.2.
Meanwhile, by letting \(\rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}) < \varepsilon\), we have the open ball \(B_d(\vect{x}, \varepsilon)\) being contained in the open ball \(B_{\rho}(\vect{x}, \varepsilon)\), which proves the euclidean metric topology is finer than the square metric topology.
Therefore, the two metrics generate the same topology.
Comment It can be seen that when a certain open ball radius is given, the larger the metric being defined, the smaller the open ball in the sense of set inclusion or cardinality.
c) Prove the topology induced by \(\rho\) is the same as the product topology on \(\mathbb{R}^n\).
Let \(\vect{B} = \prod_{i=1}^n (a_i, b_i)\) be a basis element for \(\mathbb{R}^n\) with the product topology. For all \(\vect{x} \in \vect{B}\) and \(i \in \{1, \cdots ,n\}\), there exists an \(\varepsilon_i > 0\) such that \(x_i \in (x_i - \varepsilon_i, x_i + \varepsilon_i) \subset (a_i, b_i)\). Let \(\varepsilon = \min_{1 \leq i \leq n} \{ \varepsilon_i\}\), we have \(x_i \in (x_i - \varepsilon, x_i + \varepsilon) \subset (a_i, b_i)\). Because \(B_{\rho}(\vect{x}, \varepsilon) = \prod_{i=1}^n (x_i - \varepsilon, x_i + \varepsilon)\), we have \(\vect{x} \in B_{\rho}(\vect{x}, \varepsilon) \subset \vect{B}\). Hence, the square metric topology is finer than the product topology on \(\mathbb{R}^n\).
On the other hand, let \(B_{\rho}(\vect{x}, \varepsilon)\) be an arbitrary open ball in \(\mathbb{R}^n\) with the square metric topology, it is itself a basis element for the product topology. Therefore, the product topology is finer than the square metric topology.
Finally, the two metrics generate the same topology as the product topology on \(\mathbb{R}^n\).
Comment It should be noted that although \(B_{\rho}(\vect{x}, \varepsilon) = \prod_{i=1}^n (x_i - \varepsilon, x_i + \varepsilon)\), we do not have \(B_{\bar{\rho}}(\vect{x}, \varepsilon) = \prod_{i=1}^{\infty} (x_i - \varepsilon, x_i + \varepsilon)\), where \(\bar{\rho}\) is the uniform metric on \(\mathbb{R}^{\omega}\). This point has been mentioned in this post.
Remark This theorem can be generalized as below.
If any two metrics \(d_1\) and \(d_2\) on a space \(X\) can be mutually limited, i.e. for all \(x\) and \(y\) in \(X\), there exist positive constants \(C_1\) and \(C_2\) such that \(C_1 d_1(x, y) \leq d_2(x, y) \leq C_2 d_1(x, y)\), then the two metrics induce the same topology on \(X\).
Then, these two metrics are considered to be equivalent in a topological sense and such “equivalence” can be understood like this. We have already known in this post that in a topological space, the concept of convergence is defined based on using a collection of nested open sets as rulers for “distance” measurement, when there is still no metric established. The equivalence of two metrics in a topological sense just means that the convergence behaviors in the topological spaces induced from these two metrics are the same.
Examples of equivalent metrics
In linear algebra, we have already witnessed examples of equivalent metrics, which are induced from corresponding norms for vectors or matrices.
For all \(\vect{x} \in \mathbb{R}^n\), the following is a list of commonly adopted vector norms:
- 1-norm: \(\norm{\vect{x}}_1 = \sum_{i = 1}^n \abs{x_i}\).
- 2-norm: \(\norm{\vect{x}}_2 = \left( \sum_{i=1}^n \abs{x_i}^2 \right)^{\frac{1}{2}}\).
- \(\infty\)-norm: \(\norm{\vect{x}}_{\infty} = \max_{1 \leq i \leq n} \abs{x_i}\).
It is easy to prove that these norms are equivalent as below, which implies the equivalence of their induced metrics and also the induced topologies on \(\mathbb{R}^n\).
\[
\begin{align*}
\norm{\vect{x}}_{\infty} \leq & \norm{\vect{x}}_1 \leq n \norm{\vect{x}}_{\infty} \\
\norm{\vect{x}}_{\infty} \leq & \norm{\vect{x}}_2 \leq \sqrt{n} \norm{\vect{x}}_{\infty} \\
\frac{1}{\sqrt{n}} \norm{\vect{x}}_2 \leq & \norm{\vect{x}}_1 \leq n \norm{\vect{x}}_2
\end{align*}.
\]
Based on the definition of vector norms, the corresponding norms for matrices, which are treated as linear operators on vector space, can also be induced. For all \(A \in \mathbb{R}^{n \times n}\), possible matrix norms are
- 1-norm: \(\norm{A}_1 = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A \vect{x}}_1}{\norm{\vect{x}}_1} = \max_{1 \leq j \leq n} \sum_{i=1}^n \abs{a_{ij}}\), which is the maximum column sum;
- 2-norm: \(\norm{A}_2 = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A \vect{x}}_2}{\norm{\vect{x}}_2} = \sqrt{\rho(A^T A)}\), where \(\rho\) represents the spectral radius, i.e. the maximum eigenvalue of \(A^TA\);
- \(\infty\)-norm: \(\norm{A}_{\infty} = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A \vect{x}}_{\infty}}{\norm{\vect{x}}_{\infty}} = \max_{1 \leq i \leq n} \sum_{j=1}^n \abs{a_{ij}}\), which is the maximum row sum.
The equivalence of these matrix norms can be directly derived from the equivalence of vector norms. For example, because \(\norm{A\vect{x}}_1 \leq n \norm{A\vect{x}}_2\) and \(\norm{\vect{x}}_1 \geq \frac{1}{\sqrt{n}} \norm{\vect{x}}_2\), we have
\[
\frac{\norm{A\vect{x}}_1}{\norm{\vect{x}}_1} \leq \frac{n \norm{A\vect{x}}_2}{\frac{1}{\sqrt{n}}\norm{\vect{x}}_2} = n\sqrt{n}\frac{\norm{A\vect{x}}_2}{\norm{\vect{x}}_2}.
\]
From \(\norm{A\vect{x}}_1 \geq \frac{1}{\sqrt{n}} \norm{A\vect{x}}_2\) and \(\norm{\vect{x}}_1 \leq n \norm{\vect{x}}_2\), we have
\[
\frac{1}{n\sqrt{n}}\frac{\norm{A\vect{x}}_2}{\norm{\vect{x}}_2} \leq \frac{\norm{A\vect{x}}_1}{\norm{\vect{x}}_1}.
\]
By taking supremum operation on both sides of the two inequalities,
\[
\frac{1}{n\sqrt{n}} \norm{A}_2 \leq \norm{A}_1 \leq n\sqrt{n} \norm{A}_2.
\]
Similarly, we also have
\[
\begin{align*}
\frac{1}{n} \norm{A}_{\infty} \leq & \norm{A}_1 \leq n \norm{A}_{\infty} \\
\frac{1}{\sqrt{n}} \norm{A}_{\infty} \leq & \norm{A}_2 \leq \sqrt{n} \norm{A}_{\infty}
\end{align*}.
\]
The equivalence of matrix norms implies the equivalence of their induced metrics and topologies on \(\mathbb{R}^{n \times n}\).
James Munkres Topology: Theorem 20.3 and metric equivalence的更多相关文章
- James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...
- James Munkres Topology: Theorem 19.6
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...
- James Munkres Topology: Theorem 16.3
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...
- James Munkres Topology: Sec 18 Exer 12
Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...
- James Munkres Topology: Sec 22 Exer 3
Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...
- James Munkres Topology: Sec 37 Exer 1
Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...
- James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...
随机推荐
- uploadify多文件上传实例--C#
下载uploadify文件 http://www.uploadify.com/ HTML(视图) <html lang="zh-cn"> <head> &l ...
- elasticsearch中head插件中的定制增加用户名密码范例
在head插件目录下一般 在 elasticsearch目录下的 plugins\head目录 下 在 或 plugins\head\site目录下 有 一个index.html文件.把这个文件用下面 ...
- 在IntelliJ IDEA中,注解@Slf4j找不到log
问题: 解决方法:
- python timeit模块用法
想测试一行代码的运行时间,在python中比较方便,可以直接使用timeit: >>> import timeit #执行命令 >>> t2 = timeit.Ti ...
- 贝叶斯A/B测试 - 一种计算两种概率分布差异性的方法过程
1. 控制变量 0x1:控制变量主要思想 科学中对于多因素(多变量)的问题,常常采用控制因素(变量)的方法,吧多因素的问题变成多个单因素的问题.每一次只改变其中的某一个因素,而控制其余几个因素不变,从 ...
- [面试]synchronized
synchronized 把面试中遇到的问题进行了整理. 本篇文章copy+整理自: 1. http://www.cnblogs.com/lingepeiyong/archive/2012/10/30 ...
- python常用的内置函数
python常用的内置函数集合做一个归类用的时候可以查找- abs 返回数字x的绝对值或者x的摸 - all (iterable)对于可迭代的对象iterable中所有元素x都有bool(x)为tru ...
- python 文本比对
# -*- coding:utf-8 -*- import difflib import sys def readfile(filename): try: fileHandle = open(file ...
- 「JavaScript面向对象编程指南」闭包
闭包 JS只有函数作用域,函数外为全局变量,函数内为局部变量 绿圆是函数fn的作用域,在这范围内可访问局部变量b和全局变量a,橙圆是fn内部函数inner的作用域,此范围内可访问自身作用域内的变量c, ...
- Linux安装Jdk Tomcat MySQL
Jdk安装 Tomcat安装 Mysql安装 Jdk安装 官网下载 http://www.oracle.com/technetwork/java/javase/downloads/index.html ...