James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3
Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metric \(d\) and the square metric \(\rho\) are the same as the product topology on \(\mathbb{R}^n\).
Proof: a) Prove the two metrics can mutually limit each other.
Because
\[
\rho(\vect{x}, \vect{y}) = \max_{1 \leq i \leq n} \abs{x_i - y_i} = \left( \max_{1 \leq i \leq n} (x_i - y_i)^2 \right)^{\frac{1}{2}}
\]
and the scalar function \(f(x) = x^{\frac{1}{2}}\) is increasing when \(x \geq 0\), then from
\[
\max_{1 \leq i \leq n} (x_i - y_i)^2 \leq \sum_{i=1}^n (x_i - y_i)^2,
\]
we have
\[
\left( \max_{1 \leq i \leq n} (x_i - y_i)^2 \right)^{\frac{1}{2}} \leq \left( \sum_{i=1}^n (x_i - y_i)^2 \right)^{\frac{1}{2}}.
\]
Hence,
\[
\rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}).
\]
Meanwhile,
\[
\left( \sum_{i=1}^n (x_i - y_i)^2 \right)^{\frac{1}{2}} \leq \left( n \max_{1 \leq i \leq n} (x_i - y_i)^2 \right)^{\frac{1}{2}} = \left( n \left( \max_{1 \leq i \leq n} \abs{x_i - y_i} \right)^2 \right)^{\frac{1}{2}}.
\]
Therefore,
\[
d(\vect{x}, \vect{y}) \leq \sqrt{n} \rho(\vect{x}, \vect{y}).
\]
Summarize the above we have
\[
\rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}) \leq \sqrt{n} \rho(\vect{x}, \vect{y})
\]
and its equivalent form
\[
\frac{1}{\sqrt{n}} d(\vect{x}, \vect{y}) \leq \rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}).
\]
b) Prove the two metrics generate the same topology.
For all \(\vect{x} \in \mathbb{R}^n\) and \(\varepsilon > 0\), because \(d(\vect{x}, \vect{y}) \leq \sqrt{n} \rho(\vect{x}, \vect{y})\), if we let \(\sqrt{n} \rho(\vect{x}, \vect{y}) < \varepsilon\), we also have \(d(\vect{x}, \vect{y}) < \varepsilon\). This means the open ball \(B_{\rho}(\vect{x}, \frac{\varepsilon}{\sqrt{n}})\) in the topology induced by \(\rho\) is contained in the open ball \(B_d(\vect{x}, \varepsilon)\) in the topology induced by \(d\). So the square metric topology is finer than the euclidean metric topology according to Lemma 20.2.
Meanwhile, by letting \(\rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}) < \varepsilon\), we have the open ball \(B_d(\vect{x}, \varepsilon)\) being contained in the open ball \(B_{\rho}(\vect{x}, \varepsilon)\), which proves the euclidean metric topology is finer than the square metric topology.
Therefore, the two metrics generate the same topology.
Comment It can be seen that when a certain open ball radius is given, the larger the metric being defined, the smaller the open ball in the sense of set inclusion or cardinality.
c) Prove the topology induced by \(\rho\) is the same as the product topology on \(\mathbb{R}^n\).
Let \(\vect{B} = \prod_{i=1}^n (a_i, b_i)\) be a basis element for \(\mathbb{R}^n\) with the product topology. For all \(\vect{x} \in \vect{B}\) and \(i \in \{1, \cdots ,n\}\), there exists an \(\varepsilon_i > 0\) such that \(x_i \in (x_i - \varepsilon_i, x_i + \varepsilon_i) \subset (a_i, b_i)\). Let \(\varepsilon = \min_{1 \leq i \leq n} \{ \varepsilon_i\}\), we have \(x_i \in (x_i - \varepsilon, x_i + \varepsilon) \subset (a_i, b_i)\). Because \(B_{\rho}(\vect{x}, \varepsilon) = \prod_{i=1}^n (x_i - \varepsilon, x_i + \varepsilon)\), we have \(\vect{x} \in B_{\rho}(\vect{x}, \varepsilon) \subset \vect{B}\). Hence, the square metric topology is finer than the product topology on \(\mathbb{R}^n\).
On the other hand, let \(B_{\rho}(\vect{x}, \varepsilon)\) be an arbitrary open ball in \(\mathbb{R}^n\) with the square metric topology, it is itself a basis element for the product topology. Therefore, the product topology is finer than the square metric topology.
Finally, the two metrics generate the same topology as the product topology on \(\mathbb{R}^n\).
Comment It should be noted that although \(B_{\rho}(\vect{x}, \varepsilon) = \prod_{i=1}^n (x_i - \varepsilon, x_i + \varepsilon)\), we do not have \(B_{\bar{\rho}}(\vect{x}, \varepsilon) = \prod_{i=1}^{\infty} (x_i - \varepsilon, x_i + \varepsilon)\), where \(\bar{\rho}\) is the uniform metric on \(\mathbb{R}^{\omega}\). This point has been mentioned in this post.
Remark This theorem can be generalized as below.
If any two metrics \(d_1\) and \(d_2\) on a space \(X\) can be mutually limited, i.e. for all \(x\) and \(y\) in \(X\), there exist positive constants \(C_1\) and \(C_2\) such that \(C_1 d_1(x, y) \leq d_2(x, y) \leq C_2 d_1(x, y)\), then the two metrics induce the same topology on \(X\).
Then, these two metrics are considered to be equivalent in a topological sense and such “equivalence” can be understood like this. We have already known in this post that in a topological space, the concept of convergence is defined based on using a collection of nested open sets as rulers for “distance” measurement, when there is still no metric established. The equivalence of two metrics in a topological sense just means that the convergence behaviors in the topological spaces induced from these two metrics are the same.
Examples of equivalent metrics
In linear algebra, we have already witnessed examples of equivalent metrics, which are induced from corresponding norms for vectors or matrices.
For all \(\vect{x} \in \mathbb{R}^n\), the following is a list of commonly adopted vector norms:
- 1-norm: \(\norm{\vect{x}}_1 = \sum_{i = 1}^n \abs{x_i}\).
- 2-norm: \(\norm{\vect{x}}_2 = \left( \sum_{i=1}^n \abs{x_i}^2 \right)^{\frac{1}{2}}\).
- \(\infty\)-norm: \(\norm{\vect{x}}_{\infty} = \max_{1 \leq i \leq n} \abs{x_i}\).
It is easy to prove that these norms are equivalent as below, which implies the equivalence of their induced metrics and also the induced topologies on \(\mathbb{R}^n\).
\[
\begin{align*}
\norm{\vect{x}}_{\infty} \leq & \norm{\vect{x}}_1 \leq n \norm{\vect{x}}_{\infty} \\
\norm{\vect{x}}_{\infty} \leq & \norm{\vect{x}}_2 \leq \sqrt{n} \norm{\vect{x}}_{\infty} \\
\frac{1}{\sqrt{n}} \norm{\vect{x}}_2 \leq & \norm{\vect{x}}_1 \leq n \norm{\vect{x}}_2
\end{align*}.
\]
Based on the definition of vector norms, the corresponding norms for matrices, which are treated as linear operators on vector space, can also be induced. For all \(A \in \mathbb{R}^{n \times n}\), possible matrix norms are
- 1-norm: \(\norm{A}_1 = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A \vect{x}}_1}{\norm{\vect{x}}_1} = \max_{1 \leq j \leq n} \sum_{i=1}^n \abs{a_{ij}}\), which is the maximum column sum;
- 2-norm: \(\norm{A}_2 = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A \vect{x}}_2}{\norm{\vect{x}}_2} = \sqrt{\rho(A^T A)}\), where \(\rho\) represents the spectral radius, i.e. the maximum eigenvalue of \(A^TA\);
- \(\infty\)-norm: \(\norm{A}_{\infty} = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A \vect{x}}_{\infty}}{\norm{\vect{x}}_{\infty}} = \max_{1 \leq i \leq n} \sum_{j=1}^n \abs{a_{ij}}\), which is the maximum row sum.
The equivalence of these matrix norms can be directly derived from the equivalence of vector norms. For example, because \(\norm{A\vect{x}}_1 \leq n \norm{A\vect{x}}_2\) and \(\norm{\vect{x}}_1 \geq \frac{1}{\sqrt{n}} \norm{\vect{x}}_2\), we have
\[
\frac{\norm{A\vect{x}}_1}{\norm{\vect{x}}_1} \leq \frac{n \norm{A\vect{x}}_2}{\frac{1}{\sqrt{n}}\norm{\vect{x}}_2} = n\sqrt{n}\frac{\norm{A\vect{x}}_2}{\norm{\vect{x}}_2}.
\]
From \(\norm{A\vect{x}}_1 \geq \frac{1}{\sqrt{n}} \norm{A\vect{x}}_2\) and \(\norm{\vect{x}}_1 \leq n \norm{\vect{x}}_2\), we have
\[
\frac{1}{n\sqrt{n}}\frac{\norm{A\vect{x}}_2}{\norm{\vect{x}}_2} \leq \frac{\norm{A\vect{x}}_1}{\norm{\vect{x}}_1}.
\]
By taking supremum operation on both sides of the two inequalities,
\[
\frac{1}{n\sqrt{n}} \norm{A}_2 \leq \norm{A}_1 \leq n\sqrt{n} \norm{A}_2.
\]
Similarly, we also have
\[
\begin{align*}
\frac{1}{n} \norm{A}_{\infty} \leq & \norm{A}_1 \leq n \norm{A}_{\infty} \\
\frac{1}{\sqrt{n}} \norm{A}_{\infty} \leq & \norm{A}_2 \leq \sqrt{n} \norm{A}_{\infty}
\end{align*}.
\]
The equivalence of matrix norms implies the equivalence of their induced metrics and topologies on \(\mathbb{R}^{n \times n}\).
James Munkres Topology: Theorem 20.3 and metric equivalence的更多相关文章
- James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...
- James Munkres Topology: Theorem 19.6
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...
- James Munkres Topology: Theorem 16.3
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...
- James Munkres Topology: Sec 18 Exer 12
Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...
- James Munkres Topology: Sec 22 Exer 3
Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...
- James Munkres Topology: Sec 37 Exer 1
Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...
- James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...
随机推荐
- Spring -bean的装配和注解的使用
一,bean的装配 bean是依赖注入的,通过spring容器取对象的. 装配方法有: 前面两种没什么好讲的,就改改参数就好了. 这里重要讲注解. 注解的主要类型见图,其中component是bean ...
- vue路由实现多视图的单页应用
多视图的单页应用:在一个页面中实现多个页面不同切换,url也发生相应变化. router-view结合this.$router.push("/pickUp")实现,效果如下: 当点 ...
- sql server登录名、服务器角色、数据库用户、数据库角色、架构区别联系
原创链接:https://www.cnblogs.com/lxf1117/p/6762315.html sql server登录名.服务器角色.数据库用户.数据库角色.架构区别联系 1.一个数据库用户 ...
- 《11招玩转网络安全》之第三招:Web暴力破解-Low级别
Docker中启动LocalDVWA容器,准备DVWA环境.在浏览器地址栏输入http://127.0.0.1,中打开DVWA靶机.自动跳转到了http://127.0.0.1/login.php登录 ...
- Python——built-in module Help: math
Help on built-in module math: NAME math DESCRIPTION This module is always available. It provides acc ...
- vue全局变量的使用
新建一个VUE文件,声明一个变量,并且把它export. 在main.js中引入,并声明. 在其他地方使用,直接this就可以了.
- Kindle复活记
此前,2015年为了配合拆机堂的内容项目,我们将全新Kindle PaperWhite 3进行全球首拆,让网友们第一时间全面了解了Kindle PaperWhite 3的内部构造.但由于进行深度拆解, ...
- (三)Python运算符
一.python运算符相关 Python语言支持以下类型的运算符: 算术运算符 比较(关系)运算符 赋值运算符 逻辑运算符 位运算符 成员运算符 身份运算符 运算符优先级 1.python算数运算符 ...
- hdu5974 A Simple Math Problem(数学)
题目链接 大意:给你两个数X,YX,YX,Y,让你找两个数a,ba,ba,b,满足a+b=X,lcm(a,b)=Ya+b=X,lcm(a,b)=Ya+b=X,lcm(a,b)=Y. 思路:枚举gcd( ...
- Faster R-CNN
1.R-CNN R-CNN网络架构图 R-CNN网络框架流程 1)原图像经过 selective search算法提取约2000个候选框 2)候选框缩放到同一大小,原因是上图的ConvNet需要输入图 ...