James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3
Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metric \(d\) and the square metric \(\rho\) are the same as the product topology on \(\mathbb{R}^n\).
Proof: a) Prove the two metrics can mutually limit each other.
Because
\[
\rho(\vect{x}, \vect{y}) = \max_{1 \leq i \leq n} \abs{x_i - y_i} = \left( \max_{1 \leq i \leq n} (x_i - y_i)^2 \right)^{\frac{1}{2}}
\]
and the scalar function \(f(x) = x^{\frac{1}{2}}\) is increasing when \(x \geq 0\), then from
\[
\max_{1 \leq i \leq n} (x_i - y_i)^2 \leq \sum_{i=1}^n (x_i - y_i)^2,
\]
we have
\[
\left( \max_{1 \leq i \leq n} (x_i - y_i)^2 \right)^{\frac{1}{2}} \leq \left( \sum_{i=1}^n (x_i - y_i)^2 \right)^{\frac{1}{2}}.
\]
Hence,
\[
\rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}).
\]
Meanwhile,
\[
\left( \sum_{i=1}^n (x_i - y_i)^2 \right)^{\frac{1}{2}} \leq \left( n \max_{1 \leq i \leq n} (x_i - y_i)^2 \right)^{\frac{1}{2}} = \left( n \left( \max_{1 \leq i \leq n} \abs{x_i - y_i} \right)^2 \right)^{\frac{1}{2}}.
\]
Therefore,
\[
d(\vect{x}, \vect{y}) \leq \sqrt{n} \rho(\vect{x}, \vect{y}).
\]
Summarize the above we have
\[
\rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}) \leq \sqrt{n} \rho(\vect{x}, \vect{y})
\]
and its equivalent form
\[
\frac{1}{\sqrt{n}} d(\vect{x}, \vect{y}) \leq \rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}).
\]
b) Prove the two metrics generate the same topology.
For all \(\vect{x} \in \mathbb{R}^n\) and \(\varepsilon > 0\), because \(d(\vect{x}, \vect{y}) \leq \sqrt{n} \rho(\vect{x}, \vect{y})\), if we let \(\sqrt{n} \rho(\vect{x}, \vect{y}) < \varepsilon\), we also have \(d(\vect{x}, \vect{y}) < \varepsilon\). This means the open ball \(B_{\rho}(\vect{x}, \frac{\varepsilon}{\sqrt{n}})\) in the topology induced by \(\rho\) is contained in the open ball \(B_d(\vect{x}, \varepsilon)\) in the topology induced by \(d\). So the square metric topology is finer than the euclidean metric topology according to Lemma 20.2.
Meanwhile, by letting \(\rho(\vect{x}, \vect{y}) \leq d(\vect{x}, \vect{y}) < \varepsilon\), we have the open ball \(B_d(\vect{x}, \varepsilon)\) being contained in the open ball \(B_{\rho}(\vect{x}, \varepsilon)\), which proves the euclidean metric topology is finer than the square metric topology.
Therefore, the two metrics generate the same topology.
Comment It can be seen that when a certain open ball radius is given, the larger the metric being defined, the smaller the open ball in the sense of set inclusion or cardinality.
c) Prove the topology induced by \(\rho\) is the same as the product topology on \(\mathbb{R}^n\).
Let \(\vect{B} = \prod_{i=1}^n (a_i, b_i)\) be a basis element for \(\mathbb{R}^n\) with the product topology. For all \(\vect{x} \in \vect{B}\) and \(i \in \{1, \cdots ,n\}\), there exists an \(\varepsilon_i > 0\) such that \(x_i \in (x_i - \varepsilon_i, x_i + \varepsilon_i) \subset (a_i, b_i)\). Let \(\varepsilon = \min_{1 \leq i \leq n} \{ \varepsilon_i\}\), we have \(x_i \in (x_i - \varepsilon, x_i + \varepsilon) \subset (a_i, b_i)\). Because \(B_{\rho}(\vect{x}, \varepsilon) = \prod_{i=1}^n (x_i - \varepsilon, x_i + \varepsilon)\), we have \(\vect{x} \in B_{\rho}(\vect{x}, \varepsilon) \subset \vect{B}\). Hence, the square metric topology is finer than the product topology on \(\mathbb{R}^n\).
On the other hand, let \(B_{\rho}(\vect{x}, \varepsilon)\) be an arbitrary open ball in \(\mathbb{R}^n\) with the square metric topology, it is itself a basis element for the product topology. Therefore, the product topology is finer than the square metric topology.
Finally, the two metrics generate the same topology as the product topology on \(\mathbb{R}^n\).
Comment It should be noted that although \(B_{\rho}(\vect{x}, \varepsilon) = \prod_{i=1}^n (x_i - \varepsilon, x_i + \varepsilon)\), we do not have \(B_{\bar{\rho}}(\vect{x}, \varepsilon) = \prod_{i=1}^{\infty} (x_i - \varepsilon, x_i + \varepsilon)\), where \(\bar{\rho}\) is the uniform metric on \(\mathbb{R}^{\omega}\). This point has been mentioned in this post.
Remark This theorem can be generalized as below.
If any two metrics \(d_1\) and \(d_2\) on a space \(X\) can be mutually limited, i.e. for all \(x\) and \(y\) in \(X\), there exist positive constants \(C_1\) and \(C_2\) such that \(C_1 d_1(x, y) \leq d_2(x, y) \leq C_2 d_1(x, y)\), then the two metrics induce the same topology on \(X\).
Then, these two metrics are considered to be equivalent in a topological sense and such “equivalence” can be understood like this. We have already known in this post that in a topological space, the concept of convergence is defined based on using a collection of nested open sets as rulers for “distance” measurement, when there is still no metric established. The equivalence of two metrics in a topological sense just means that the convergence behaviors in the topological spaces induced from these two metrics are the same.
Examples of equivalent metrics
In linear algebra, we have already witnessed examples of equivalent metrics, which are induced from corresponding norms for vectors or matrices.
For all \(\vect{x} \in \mathbb{R}^n\), the following is a list of commonly adopted vector norms:
- 1-norm: \(\norm{\vect{x}}_1 = \sum_{i = 1}^n \abs{x_i}\).
- 2-norm: \(\norm{\vect{x}}_2 = \left( \sum_{i=1}^n \abs{x_i}^2 \right)^{\frac{1}{2}}\).
- \(\infty\)-norm: \(\norm{\vect{x}}_{\infty} = \max_{1 \leq i \leq n} \abs{x_i}\).
It is easy to prove that these norms are equivalent as below, which implies the equivalence of their induced metrics and also the induced topologies on \(\mathbb{R}^n\).
\[
\begin{align*}
\norm{\vect{x}}_{\infty} \leq & \norm{\vect{x}}_1 \leq n \norm{\vect{x}}_{\infty} \\
\norm{\vect{x}}_{\infty} \leq & \norm{\vect{x}}_2 \leq \sqrt{n} \norm{\vect{x}}_{\infty} \\
\frac{1}{\sqrt{n}} \norm{\vect{x}}_2 \leq & \norm{\vect{x}}_1 \leq n \norm{\vect{x}}_2
\end{align*}.
\]
Based on the definition of vector norms, the corresponding norms for matrices, which are treated as linear operators on vector space, can also be induced. For all \(A \in \mathbb{R}^{n \times n}\), possible matrix norms are
- 1-norm: \(\norm{A}_1 = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A \vect{x}}_1}{\norm{\vect{x}}_1} = \max_{1 \leq j \leq n} \sum_{i=1}^n \abs{a_{ij}}\), which is the maximum column sum;
- 2-norm: \(\norm{A}_2 = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A \vect{x}}_2}{\norm{\vect{x}}_2} = \sqrt{\rho(A^T A)}\), where \(\rho\) represents the spectral radius, i.e. the maximum eigenvalue of \(A^TA\);
- \(\infty\)-norm: \(\norm{A}_{\infty} = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A \vect{x}}_{\infty}}{\norm{\vect{x}}_{\infty}} = \max_{1 \leq i \leq n} \sum_{j=1}^n \abs{a_{ij}}\), which is the maximum row sum.
The equivalence of these matrix norms can be directly derived from the equivalence of vector norms. For example, because \(\norm{A\vect{x}}_1 \leq n \norm{A\vect{x}}_2\) and \(\norm{\vect{x}}_1 \geq \frac{1}{\sqrt{n}} \norm{\vect{x}}_2\), we have
\[
\frac{\norm{A\vect{x}}_1}{\norm{\vect{x}}_1} \leq \frac{n \norm{A\vect{x}}_2}{\frac{1}{\sqrt{n}}\norm{\vect{x}}_2} = n\sqrt{n}\frac{\norm{A\vect{x}}_2}{\norm{\vect{x}}_2}.
\]
From \(\norm{A\vect{x}}_1 \geq \frac{1}{\sqrt{n}} \norm{A\vect{x}}_2\) and \(\norm{\vect{x}}_1 \leq n \norm{\vect{x}}_2\), we have
\[
\frac{1}{n\sqrt{n}}\frac{\norm{A\vect{x}}_2}{\norm{\vect{x}}_2} \leq \frac{\norm{A\vect{x}}_1}{\norm{\vect{x}}_1}.
\]
By taking supremum operation on both sides of the two inequalities,
\[
\frac{1}{n\sqrt{n}} \norm{A}_2 \leq \norm{A}_1 \leq n\sqrt{n} \norm{A}_2.
\]
Similarly, we also have
\[
\begin{align*}
\frac{1}{n} \norm{A}_{\infty} \leq & \norm{A}_1 \leq n \norm{A}_{\infty} \\
\frac{1}{\sqrt{n}} \norm{A}_{\infty} \leq & \norm{A}_2 \leq \sqrt{n} \norm{A}_{\infty}
\end{align*}.
\]
The equivalence of matrix norms implies the equivalence of their induced metrics and topologies on \(\mathbb{R}^{n \times n}\).
James Munkres Topology: Theorem 20.3 and metric equivalence的更多相关文章
- James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...
- James Munkres Topology: Theorem 19.6
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...
- James Munkres Topology: Theorem 16.3
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...
- James Munkres Topology: Sec 18 Exer 12
Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...
- James Munkres Topology: Sec 22 Exer 3
Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...
- James Munkres Topology: Sec 37 Exer 1
Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...
- James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...
随机推荐
- Git复制已有分支到新分支开发
如果我们需要在现有的分支代码基础上,复制代码到新分支进行开发,并推送至远程仓库,可以进行如下操作: 注:被复制的分支代码(ibis35),创建新的分支(ibis35-dev) 1. 切换到被copy的 ...
- js/vue图片压缩
js版 新建compressImage.js,内容如下: // 将base64转换为blob(有需要可加上,没需要可不加) function convertBase64UrlToBlob(urlDat ...
- JGUI源码:实现日期控件显示(17)
本文实现一个日期控件显示,日期控件看起来很复杂,其实原理很简单,大部分情况下我们直接使用别人做得好的日期控件就行,但有时候特殊需求,比如显示提醒之类的,恐怕第三方控件就不好实现了, 为了使程序逻辑看起 ...
- 开放源代码的设计层面框架Spring——day02
spring第二天 一.基于注解的IOC配置 1.1写在最前 学习基于注解的IOC配置,大家脑海里首先得有一个认知,即注解配置和xml配置要实现的功能是 ...
- LOJ #6509. 「雅礼集训 2018 Day7」C
神仙题 LOJ #6509 题意 给定一棵树,点权为0/1,每次随机一个点(可能和之前所在点相同)走到该点并将其点权异或上1 求期望的移动距离使得所有点点权相同 题解 根本不会解方程 容易发现如果一个 ...
- AQS学习笔记之独占锁
作用 参与 共享锁 acquireShared() 和 独占锁 acquire() 的抢锁逻辑, 具体的抢锁逻辑不作实现,只对第一次抢锁未抢到锁线程做处理,第一次抢锁就抢到的线程就不需要遇到AQS了 ...
- MyBatis入门2
一.实现单一查询 1)核心配置文件:Configuration.xml 1 <?xml version="1.0" encoding="UTF-8"?&g ...
- zhifubao
使用Git的一个优势便是 我们可以自由的切换到其他分支,而不影响主分支的正常开发,每个分支上都是一份完成的可执行代码那么如何创建分支呢, 创建分支有几种方法, 本地分支和远程分支的差别,意义各是什么,
- Python爬虫之selenium各种注意报错
刚刚写完第一个selenuim+BeautifulSoup实战爬虫 爬淘宝.发现代码写完后不加for 翻页的时候没什么问题 解析 操作 都没问题 也就是说第一页 的内容 完好 pagebtn=wait ...
- 机器学习-kmeans的使用
import numpy as np import pandas as pd import matplotlib from matplotlib import pyplot as plt %matpl ...