问题定义:

给定一个长度为N的数组A,找出一个最长的单调递增子序列(不要求连续)。

这道题共3种解法。

1. 动态规划

动态规划的核心是状态的定义和状态转移方程。定义lis(i),表示前i个数中以A[i]结尾的最长递增子序列的长度。可以得到以下的状态转移方程:

d(i) = max(, d(j) + ), 其中j < i,且A[j] <= A[i]

程序实现:

int longestIncreasingSubsequence(vector<int> nums)
{
if (nums.empty())
return ;
int len = nums.size();
vector<int> lis(len, ); for (int i = ; i < len; ++i)
{
for (int j = ; j < i; ++j)
{
if (nums[j] < nums[i] && lis[i] < lis[j] + )
lis[i] = lis[j] + ;
}
}
return *max_element(lis.begin(), lis.end());
}

程序复杂度为O(N^2)

2. 动态规划 + 二分查找

换一种角度看问题。令Ai,j表示所有长度为j的最大递增子序列的最小末尾,我们有Ai,1 < Ai,2 < ... < Ai,j。

对A[i+1]来说,有两种选择。

1. Ai,j < A[i+1], 此时我们可以得到一个长度为i+1的最大递增子序列。

2. 替换Ai,k,如果Ai,k-1 < A[i+1] < Ai,k。

替换长度为k的最大递增子序列的最小末尾,是为了增大获取更长子序列的机会。

程序实现:

int binarySearch(const int arr[], int low, int high, int val)
{
while (low <= high)
{
int mid = low + (high - low) / ; // Do not use (low + high) / 2 which might encounter overflow issue if (val < arr[mid])
high = mid - ;
else if (val > arr[mid])
low = mid + ;
else
return mid;
}
return low;
}
int LIS(int arr[], int n)
{
int *minTail = new int[n];
minTail[] = arr[];
int len = ;
for (int i = ; i < n; ++i)
{
if (arr[i] > minTail[len-])
minTail[len++] = arr[i];
else
{
int pos = binarySearch(minTail, , len-, arr[i]);
minTail[pos] = arr[i];
}
}
delete [] minTail;
return len;
}

复杂度:O(nlogn)

reference :

最长递增子序列(LIS)

3. 排序+LCS

这种方法就不细说了。。。

最长递增子序列(Longest increasing subsequence)的更多相关文章

  1. 【转】动态规划:最长递增子序列Longest Increasing Subsequence

    转自:https://www.cnblogs.com/coffy/p/5878915.html 设f(i)表示L中以ai为末元素的最长递增子序列的长度.则有如下的递推方程: 这个递推方程的意思是,在求 ...

  2. 算法实践--最长递增子序列(Longest Increasing Subsquence)

    什么是最长递增子序列(Longest Increasing Subsquence) 对于一个序列{3, 2, 6, 4, 5, 1},它包含很多递增子序列{3, 6}, {2,6}, {2, 4, 5 ...

  3. 300最长上升子序列 · Longest Increasing Subsequence

    [抄题]: 往上走台阶 最长上升子序列问题是在一个无序的给定序列中找到一个尽可能长的由低到高排列的子序列,这种子序列不一定是连续的或者唯一的. 样例 给出 [5,4,1,2,3],LIS 是 [1,2 ...

  4. [Swift]LeetCode300. 最长上升子序列 | Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  5. 最长递增子序列(Longest Increase Subsequence)

    问题 给定一个长度为N的数组,找出一个最长的单调自增子序列(不一定连续,但是顺序不能乱).例如:给定一个长度为6的数组A{5, 6, 7, 1, 2, 8},则其最长的单调递增子序列为{5,6,7,8 ...

  6. nlog(n)解动态规划--最长上升子序列(Longest increasing subsequence)

    最长上升子序列LIS问题属于动态规划的初级问题,用纯动态规划的方法来求解的时间复杂度是O(n^2).但是如果加上二叉搜索的方法,那么时间复杂度可以降到nlog(n).  具体分析参考:http://b ...

  7. 动态规划--最长上升子序列(Longest increasing subsequence)

    前面写了最长公共子序列的问题.然后再加上自身对动态规划的理解,真到简单的DP问题很快就解决了.其实只要理解了动态规划的本质,那么再有针对性的去做这方的题目,思路很快就会有了.不错不错~加油 题目描述: ...

  8. [Swift]LeetCode329. 矩阵中的最长递增路径 | Longest Increasing Path in a Matrix

    Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...

  9. [Swift]LeetCode594. 最长和谐子序列 | Longest Harmonious Subsequence

    We define a harmonious array is an array where the difference between its maximum value and its mini ...

随机推荐

  1. git中常用命令的总结

    一.git stash  1.git  stash 保存当前工作进度,会把暂存区和工作区的改动保存起来.执行完这个命令后,在运行git status命令,就会发现当前是一个干净的工作区,没有任何改动. ...

  2. 有关google的guava工具包详细说明

    Guava 中文是石榴的意思,该项目是 Google 的一个开源项目,包含许多 Google 核心的 Java 常用库. 目前主要包含: com.google.common.annotations c ...

  3. Codeup 25609 Problem I 习题5-10 分数序列求和

    题目描述 有如下分数序列 2/1,3/2,5/3,8/5,13/8,21/13 - 求出次数列的前20项之和. 请将结果的数据类型定义为double类型. 输入 无 输出 小数点后保留6位小数,末尾输 ...

  4. 动态规划_01背包_从Dijikstra和Floyd入手,彻底理解01背包

    dp一直是短板,现在从最基础的地方开始补 给定背包总容量 M ,n个商品选择,分别有价值vi,占量wi,从中取商品放入背包,令.容量和W=Σwi不超过M,令背包中的价值和V=Σvi最大 然后取法有很多 ...

  5. L1线性回归

    线性回归 主要内容包括: 线性回归的基本要素 线性回归模型从零开始的实现 线性回归模型使用pytorch的简洁实现 代码下载地址 https://download.csdn.net/download/ ...

  6. Feature list, Standard and Test plan for BETA Release 12/22/2015

    ===================BETA RELEASE FEATRURE LIST==================== 1. Log in and account manager for ...

  7. Python程序设计 实验 1 熟悉 IDLE 和在线编程平台

    ------------恢复内容开始------------ 安徽工程大学 Python程序设计 实验报告 班级   物流191   姓名  姚彩琴  学号3190505129 成绩 日期     2 ...

  8. python圆周率计算小程序(非常慢)

    源码: from math import fabs #导入数学模块 from time import perf_counter #导入时间模块 from numba import jit @jit d ...

  9. Laravel - 基础

    1.使用 composer 创建项目 composer create-project --prefer-dist laravel/laravel blog 报错1 [ErrorException]pr ...

  10. Centos安装docker+vulhub搭建

    嫌弃平常因为复现搭建环境所带来的麻烦,所以打算用docker来管理搭建靶机 准备一个纯净的Centos系统虚拟机安装,这里已经安装好了就不演示怎么在虚拟机安装 安装Docker最基本的要求是Linux ...