最长递增子序列(Longest increasing subsequence)
问题定义:
给定一个长度为N的数组A,找出一个最长的单调递增子序列(不要求连续)。
这道题共3种解法。
1. 动态规划
动态规划的核心是状态的定义和状态转移方程。定义lis(i),表示前i个数中以A[i]结尾的最长递增子序列的长度。可以得到以下的状态转移方程:
d(i) = max(, d(j) + ), 其中j < i,且A[j] <= A[i]
程序实现:
int longestIncreasingSubsequence(vector<int> nums)
{
if (nums.empty())
return ;
int len = nums.size();
vector<int> lis(len, ); for (int i = ; i < len; ++i)
{
for (int j = ; j < i; ++j)
{
if (nums[j] < nums[i] && lis[i] < lis[j] + )
lis[i] = lis[j] + ;
}
}
return *max_element(lis.begin(), lis.end());
}
程序复杂度为O(N^2)
2. 动态规划 + 二分查找
换一种角度看问题。令Ai,j表示所有长度为j的最大递增子序列的最小末尾,我们有Ai,1 < Ai,2 < ... < Ai,j。
对A[i+1]来说,有两种选择。
1. Ai,j < A[i+1], 此时我们可以得到一个长度为i+1的最大递增子序列。
2. 替换Ai,k,如果Ai,k-1 < A[i+1] < Ai,k。
替换长度为k的最大递增子序列的最小末尾,是为了增大获取更长子序列的机会。
程序实现:
int binarySearch(const int arr[], int low, int high, int val)
{
while (low <= high)
{
int mid = low + (high - low) / ; // Do not use (low + high) / 2 which might encounter overflow issue if (val < arr[mid])
high = mid - ;
else if (val > arr[mid])
low = mid + ;
else
return mid;
}
return low;
}
int LIS(int arr[], int n)
{
int *minTail = new int[n];
minTail[] = arr[];
int len = ;
for (int i = ; i < n; ++i)
{
if (arr[i] > minTail[len-])
minTail[len++] = arr[i];
else
{
int pos = binarySearch(minTail, , len-, arr[i]);
minTail[pos] = arr[i];
}
}
delete [] minTail;
return len;
}
复杂度:O(nlogn)
reference :
最长递增子序列(LIS)
3. 排序+LCS
这种方法就不细说了。。。
最长递增子序列(Longest increasing subsequence)的更多相关文章
- 【转】动态规划:最长递增子序列Longest Increasing Subsequence
转自:https://www.cnblogs.com/coffy/p/5878915.html 设f(i)表示L中以ai为末元素的最长递增子序列的长度.则有如下的递推方程: 这个递推方程的意思是,在求 ...
- 算法实践--最长递增子序列(Longest Increasing Subsquence)
什么是最长递增子序列(Longest Increasing Subsquence) 对于一个序列{3, 2, 6, 4, 5, 1},它包含很多递增子序列{3, 6}, {2,6}, {2, 4, 5 ...
- 300最长上升子序列 · Longest Increasing Subsequence
[抄题]: 往上走台阶 最长上升子序列问题是在一个无序的给定序列中找到一个尽可能长的由低到高排列的子序列,这种子序列不一定是连续的或者唯一的. 样例 给出 [5,4,1,2,3],LIS 是 [1,2 ...
- [Swift]LeetCode300. 最长上升子序列 | Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...
- 最长递增子序列(Longest Increase Subsequence)
问题 给定一个长度为N的数组,找出一个最长的单调自增子序列(不一定连续,但是顺序不能乱).例如:给定一个长度为6的数组A{5, 6, 7, 1, 2, 8},则其最长的单调递增子序列为{5,6,7,8 ...
- nlog(n)解动态规划--最长上升子序列(Longest increasing subsequence)
最长上升子序列LIS问题属于动态规划的初级问题,用纯动态规划的方法来求解的时间复杂度是O(n^2).但是如果加上二叉搜索的方法,那么时间复杂度可以降到nlog(n). 具体分析参考:http://b ...
- 动态规划--最长上升子序列(Longest increasing subsequence)
前面写了最长公共子序列的问题.然后再加上自身对动态规划的理解,真到简单的DP问题很快就解决了.其实只要理解了动态规划的本质,那么再有针对性的去做这方的题目,思路很快就会有了.不错不错~加油 题目描述: ...
- [Swift]LeetCode329. 矩阵中的最长递增路径 | Longest Increasing Path in a Matrix
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
- [Swift]LeetCode594. 最长和谐子序列 | Longest Harmonious Subsequence
We define a harmonious array is an array where the difference between its maximum value and its mini ...
随机推荐
- C语言折半查找法练习题冒泡排序
C语言折半查找法练习题 折半查找法: 折半查找法是效率较高的一种查找方法.假设有已经按照从小到大的顺序排列好的五个整数num[0]~num[4],要查找的数是key,其基本思想是: 设查找数据的范围下 ...
- 【做中学】第一个 Go 语言程序:漫画下载器
原文地址: 第一个 Go 语言程序:漫画下载器: https://schaepher.github.io/2020/04/11/golang-first-comic-downloader 之前学了点 ...
- 知识点二:HTTP超文本文件传输协议
HTTP超文本传输协议概念: http1.1之前采用非持续链接服务器在建立连接上开销较大,http1.1之后默认采用持续连接,并有超时设置 http协议:超文本文件传输协议,用于传输文本文件,请求的方 ...
- \r\n的意思
\n是换行,英文是New line.\r是回车,英文是Carriage return. 1.换行符(line break),是一种计算机语言表达方式,它的作用是跳到下一个新行.在不同的语言中,代码也有 ...
- 论JDK5/7/8版本都做出了哪些革新
在Java发展的里程碑上,有三个版本做出的改动,是革命性的 为什么说是革命性的呢? 因为这三个版本所推出的有些新机制,在之后的Java框架开发.新类的产生等等中, 都被广泛使用了. 那么,这三个版本的 ...
- 串匹配问题 (KMP算法) 详解
串这个概念对于我们学到现在的水平来说应该是经历颇丰了,因为在C语言中我们所用到的"串"知识是在字符串那里,有了这个概念,我们再去学习串就相对而言轻松多了. 那么,现在来介绍一下字符 ...
- 归并排序(归并排序求逆序对数)--16--归并排序--Leetcode面试题51.数组中的逆序对
面试题51. 数组中的逆序对 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数. 示例 1: 输入: [7,5,6,4] 输出 ...
- 【MyBatis深入剖析】应用分析与最佳实践(下)
MyBatis编程式开发 MyBatis编程式开发步骤 MyBatis和MySQL Jar包依赖 全局配置文件mybatis-config.xml 映射器Mapper.xml Mapper接口 编程式 ...
- ES6中对数组的扩展
hello,大家好,我又来了. 前面讲了字符串和数值的扩展,今天要讲的是:数组的扩展.不知道大家能否跟得上这个节奏,你们在阅读中对讲解有存在疑惑,记得留言提出来,要真正地理解,否则白白 ...
- Jetson AGX Xavier更换apt-get源
使用apt-get安装时,会很慢,更换了国内的源后,就可以解决这个问题了. 1. 备份sources.list文件 sudo cp /etc/apt/sources.list /etc/apt/sou ...