SCOI2005 互不侵犯 [状压dp]
题目大意:有n*n个格子,你需要放置k个国王使得它们无法互相攻击,每个国王的攻击范围为上下左走,左上右上左下右下,共8个格子,求最多的方法数
看到题目,是不是一下子就想到了玉米田那道题,如果不会的话可以去我另外一篇博客里面看看,里面有玉米田详细解答方案.
好,回到这道题.首先,看到数据范围,很自然的想到状压dp.题目要求我们已经放了国王格子的上下左右以及左上右上左下右下都不能放国王,那么我们就可以通过上一行的状态来更新这一行的状态,即dp[i][state]表示到第i行状态为state满足条件的个数,但是这样很显然是不够的,因为题目只让我们选k个,所以还要加一维来储存个数,即dp[i][state][j]表示到第i行状态为state已经放置了j个国王的满足条件的个数
dp方程应该很好想吧,和玉米田差不多
dp[i+1][state][j]+=dp[i][state'][k]
现在来分步操作一下
首先是预处理,我们可以把左右两边均无1理解为一个状态没有相邻的1
void init()
{
for(lol i=;i<(<<n);i++)
if(!(i&(i<<)))//如果这个状态没有相邻的1
{
can[++cnt]=i;//保存下来
lol c=;
for(lol j=;j<=n;j++) if(i&(<<(j-))) c++;//统计这个状态有多少个1
sum[cnt]=c;
}
}
然后就是初始化第1行
for(lol i=;i<=cnt;i++)
{
dp[][can[i]][sum[i]]=;
}
dp过程,题目要求左上右上均无1,那么我们可以把上一行的状态分别右移和左移,再相与,若为0则代表这个状态合法,还有就是转移状态的时候,sum[k]不能直接+=sum[j],然后dp[i+1][can[k]][sum[k]]+=dp[i][can[j]][sum[j]]因为要枚举很多次,这样sum[k]一直加下去会爆long long,所以改用for循环枚举
for(lol i=;i<n;i++)//枚举第1~m-1行
for(lol j=;j<=cnt;j++)//枚举第i行的状态
for(lol k=;k<=cnt;k++)//枚举第i+1的状态
if(!(can[j]&can[k]) && !(can[j]<<&can[k]) && !(can[j]>>&can[k]))//如果它对应的这一位以及左右都没有1
for(lol l=;l+sum[k]<=r;l++)//枚举这一个状态可以放多少个1
dp[i+][can[k]][l+sum[k]]+=dp[i][can[j]][l];//转移状态
然后就是统计最后结果了,因为题目要求我们选k个,而且最终的结果都保存在最后一行,所以枚举最后一行的状态就行了
完整版代码,个人感觉还是比较简洁易懂的
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<cstring>
#define in(i) (i=read())
using namespace std;
typedef long long lol;
lol read()
{
lol ans=,f=;
char i=getchar();
while(i<''||i>'')
{
if(i=='-') f=-;
i=getchar();
}
while(i>=''&&i<='')
{
ans=(ans<<)+(ans<<)+i-'';
i=getchar();
}
return ans*f;
}
lol can[],dp[][<<][],sum[];
lol n,r,cnt,tot;
void init()
{
for(lol i=;i<(<<n);i++)
if(!(i&(i<<)))//如果这个状态没有相邻的1
{
can[++cnt]=i;//保存下来
lol c=;
for(lol j=;j<=n;j++) if(i&(<<(j-))) c++;//统计这个状态有多少个1
sum[cnt]=c;
}
}
int main()
{
lol ans=;
in(n);in(r);
init();
for(lol i=;i<=cnt;i++)
dp[][can[i]][sum[i]]=;
for(lol i=;i<n;i++)//枚举第1~m-1行
for(lol j=;j<=cnt;j++)//枚举第i行的状态
for(lol k=;k<=cnt;k++)//枚举第i+1的状态
if(!(can[j]&can[k]) && !(can[j]<<&can[k]) && !(can[j]>>&can[k]))//如果它对应的这一位以及左右都没有1
for(lol l=;l+sum[k]<=r;l++)//枚举这一个状态可以放多少个1
dp[i+][can[k]][l+sum[k]]+=dp[i][can[j]][l];//转移状态
for(lol i=;i<=cnt;i++)
ans+=dp[n][can[i]][r];//最后答案都在最后一行,记得开long long
printf("%lld\n",ans);
return ;
}
SCOI2005 互不侵犯 [状压dp]的更多相关文章
- BZOJ1087[SCOI2005]互不侵犯——状压DP
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入 只有一行,包含两个数N,K ( ...
- P1896 [SCOI2005]互不侵犯 状压dp
正解:状压dp 解题报告: 看到是四川省选的时候我心里慌得一批TT然后看到难度之后放下心来觉得大概没有那么难 事实证明我还是too young too simple了QAQ难到爆炸TT我本来还想刚一道 ...
- [SCOI2005]互不侵犯 (状压$dp$)
题目链接 Solution 状压 \(dp\) . \(f[i][j][k]\) 代表前 \(i\) 列中 , 已经安置 \(j\) 位国王,且最后一位状态为 \(k\) . 然后就可以很轻松的转移了 ...
- luogu1896 [SCOI2005]互不侵犯 状压DP
题目大意 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.( 1 <=N <=9, 0 ...
- NOI P1896 互不侵犯 状压DP
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...
- _bzoj1087 [SCOI2005]互不侵犯King【dp】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1087 令f(i, j, k)表示前i列,二进制状态为j,已经用了k个国王的方案数,则 f(i ...
- 洛谷——P1896 [SCOI2005]互不侵犯
P1896 [SCOI2005]互不侵犯 状压DP入门题 状压DP一般需要与处理状态是否合法,节省时间 设定状态dp[i][j][k]表示第i行第j个状态选择国王数为k的方案数 $dp[i][j][n ...
- 状压DP概念 及例题(洛谷 P1896 互不侵犯)
状压DP 就是状态压缩DP.所谓状态压缩,就是将一些复杂的状态压缩起来,一般来说是压缩为一个二进制数,用01来表示某一元素的状态. 比如一排灯泡(5个) 我们可以用一串二进制01串来表示他们的状态 1 ...
- BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3336 Solved: 1936[Submit][ ...
随机推荐
- python3 练习题100例 (二十九)猴子吃桃问题
题目内容: 猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个第二天早上又将剩下的桃子吃掉一半,又多吃了一个.以后每天早上都吃了前一天剩下的一半零一个.到第n天(<1<n< ...
- linux几条基本命令和解释
pwd 查看当前目录/ 根目录ls 查看当前目录所包含文件ls -l 查看当前目录所包含文件的详细信息d rwx rwx r-x 1 root root1 2 3 4 ...
- ffmpeg使用笔记
1.从mp4中提取h264:ffmpeg -i 264.mp4 -codec copy -bsf h264_mp4toannexb -f h264 output.h2642.从mp4中提取hevc:f ...
- luogu4238 【模板】多项式求逆
ref #include <iostream> #include <cstdio> using namespace std; typedef long long ll; int ...
- Freemarker 的 Shiro 标签使用详解
一.引入依赖(已解决版本冲突) <!-- shiro-freemarker-tags start --> <dependency> <groupId>net.min ...
- 实现网页布局的自适应 利用@media screen
利用@media screen实现网页布局的自适应,IE9一下不支持 @media screen /*1280分辨率以上(大于1200px)*/ @media screen and (min-widt ...
- Spring实战第六章学习笔记————渲染Web视图
Spring实战第六章学习笔记----渲染Web视图 理解视图解析 在之前所编写的控制器方法都没有直接产生浏览器所需的HTML.这些方法只是将一些数据传入到模型中然后再将模型传递给一个用来渲染的视图. ...
- cmd命令笔记
查看端口信息:netstat -ano eg. netstat -ano|findstr 0.0.0.0:443 根据pid查看进程信息等:wmic process get name,executab ...
- pexpect获取远端命令执行结果
类比于shell的expect, python中使用pexpect模块来模拟用户和终端交互.有的时候使用pexpect.sendline发送命令后,在各种条件影响下, 可能并不能保证命令在远端服务器执 ...
- Daily Scrum02 11.30
纵然编译大作业压顶,大家还是顶住压力,保证了软工项目的持续进行. Member Today's Task Tomorrow's Task 李孟 Task856 熟悉单元测试方法熟悉单元测试方法 Tas ...