【BZOJ 3232】圈地游戏 二分+SPFA判环/最小割经典模型
最小割经典模型指的是“一堆元素进行选取,对于某个元素的取舍有代价或价值,对于某些对元素,选取后会有额外代价或价值”的经典最小割模型,建立倒三角进行最小割。
这个二分是显然的,一开始我也是想到了最小割的那个模型的但是我觉得他会不是一个圈我就否掉了,但是仔细想想的话会发现,如果是这样的话所得到的答案一定小于等于一个圈的答案(浓度),所以我们可定会得到最终答案,所以这样做是可以的,所以说要有宽松得正解的意识(泥沙俱下但沙子不影响我泥)。当时我否掉最小割以后就立马去想费用流了,然后想到建图后发现那样建图虽然不好跑费用流,但是SPFA判环还是很劲的,所以我就判了一发环。
在这里就顺便说一下SPFA判负(正)环吧。DFS的话就是判断一个点是否重复出现在DFS路径中,他有一个优化(没看呢),就叫他DFS+吧。然后他还有BFS版的,就是判断一个点是否重复入队n次(点数),但是不能判断是否被更新n次,这样有可能会出错(不用重边就可以做到)(也许可以分析是否可行但是不会很简单而且很难考虑周全),并且这两种方法的时间复杂度有些时候差距并不大只不过是一个常数。网上还有人说是进队次数大于入度,这个经试验证明是扯淡。还有另一种做法是判断到达次点的最短路径的边数等于n这个不仅很对还很快,就叫他BFS+吧。
对于这道题DFS会T,然而DFS+,BFS,以及BFS+均可过,而BFS+表现最优。这说明虽然找最短路方面BFS_SPFA找最短路比DFS_SPFA要好,但是在判环方面并不是DFS一定优于BFS,比如这道题,所以说BFS大法吼。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define pos(a,b) (((a)-1)*(m+1)+(b))
typedef long double db;
const int N=;
const int P=N*N;
const int E=P*;
const db oo=-1e18;
const db eps=1e-;
const db ans_eps=1e-;
struct V{
int to,next;
db w;
}c[E];
int head[P],t;
inline void add(int x,int y,db z){
c[++t].to=y,c[t].next=head[x],head[x]=t,c[t].w=z;
}
db dis[P];
bool in[P];
int n,m,sum;
int val[N][N],cost1[N][N],cost2[N][N];
int q[P],front,back;
int cnt[P];
inline bool spfa(int s){
q[back++]=s,in[s]=true;
if(back==P)back=;
while(front!=back){
int x=q[front++];
in[x]=false;
if(front==P)front=;
for(int i=head[x];i;i=c[i].next)
if(dis[x]+c[i].w-dis[c[i].to]>eps){
dis[c[i].to]=dis[x]+c[i].w;
cnt[c[i].to]=cnt[x]+;
if(cnt[c[i].to]==sum)return true;
if(in[c[i].to]==false){
q[back++]=c[i].to;
in[c[i].to]=true;
if(back==P)back=;
}
}
}
return false;
}
inline bool check(db mid){
memset(head,,sizeof(head)),t=;
memset(in,,sizeof(in));
memset(cnt,,sizeof(cnt));
for(int i=;i<=sum;++i)dis[i]=oo;
for(int i=;i<=n+;++i)
for(int j=;j<=m+;++j){
if(j!=m+)
add(pos(i,j),pos(i,j+),-cost1[i][j]*mid+val[i][j]);
if(j!=)
add(pos(i,j),pos(i,j-),-cost1[i][j-]*mid-val[i][j-]);
if(i!=n+)
add(pos(i,j),pos(i+,j),-cost2[i][j]*mid);
if(i!=)
add(pos(i,j),pos(i-,j),-cost2[i-][j]*mid);
}
dis[sum/]=.;
return spfa(sum/);
}
int main(){
scanf("%d%d",&n,&m);
sum=(n+)*(m+);
for(int i=;i<=n;++i)
for(int j=;j<=m;++j)
scanf("%d",&val[i][j]);
for(int i=;i<=m;++i)
for(int j=n;j>;--j)
val[j][i]+=val[j+][i];
for(int i=;i<=n+;++i)
for(int j=;j<=m;++j)
scanf("%d",&cost1[i][j]);
for(int i=;i<=n;++i)
for(int j=;j<=m+;++j)
scanf("%d",&cost2[i][j]);
db l=.,r=.,mid,ans=.;
while(l+ans_eps<r){
mid=(l+r)*0.5;
if(check(mid))
ans=mid,l=mid;
else
r=mid;
}
printf("%.3f",(double)ans);
return ;
}
【BZOJ 3232】圈地游戏 二分+SPFA判环/最小割经典模型的更多相关文章
- BZOJ 3232: 圈地游戏 分数规划+判负环
		3232: 圈地游戏 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 966 Solved: 466[Submit][Status][Discuss] ... 
- bzoj 3232: 圈地游戏
		bzoj 3232: 圈地游戏 01分数规划,就是你要最大化\(\frac{\sum A}{\sum B}\),就二分这个值,\(\frac{\sum A}{\sum B} \geq mid\) \( ... 
- bzoj 3232 圈地游戏——0/1分数规划(或网络流)
		题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 当然是0/1分数规划.但加的东西和减的东西不在一起,怎么办? 考虑把它们合在一起.因为 ... 
- bzoj 3232 圈地游戏 —— 01分数规划+最小割建图(最大权闭合子图)
		题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 心烦意乱的时候调这道题真是...越调越气,就这样过了一晚上... 今天再认真看看,找出 ... 
- bzoj 3232: 圈地游戏【分数规划+最小割】
		数组开小导致TTTTTLE-- 是分数规划,设sm为所有格子价值和,二分出mid之后,用最小割来判断,也就是判断sm-dinic()>=0 这个最小割比较像最大权闭合子图,建图是s像所有点连流量 ... 
- bzoj 3232: 圈地游戏 01分数规划
		题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3232 题解: 首先我们看到这道题让我们最优化一个分式. 所以我们应该自然而然地想到01分 ... 
- bzoj 2132 圈地计划(黑白染色,最小割)
		[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2132 [题意] 给定n*m个区域,建工业区价值A,建商业区价值B,如果(i,j)有k个 ... 
- poj 2049(二分+spfa判负环)
		poj 2049(二分+spfa判负环) 给你一堆字符串,若字符串x的后两个字符和y的前两个字符相连,那么x可向y连边.问字符串环的平均最小值是多少.1 ≤ n ≤ 100000,有多组数据. 首先根 ... 
- 2018.09.12 poj3621Sightseeing Cows(01分数规划+spfa判环)
		传送门 01分数规划板题啊. 发现就是一个最优比率环. 这个直接二分+spfa判负环就行了. 代码: #include<iostream> #include<cstdio> # ... 
随机推荐
- mysql新增和更新表从已有数据库里面获取的sql语句
			在mysql数据库从已有数据库表插入数据到另一表的sql例子 insert into c(`name`) select name from b; 在mysql数据库从已有数据库表更新数据到另一表的sq ... 
- python递归函数(计算阶乘)
			def f1(x,x1=1): if x == 1: return x1 #x1这个值为我们所需要的值,所以返回 x1 *= x r = f1(x-1,x1) #r接收返回值,并在下面接着返回 ret ... 
- stm32+lwip(一):使用STM32CubeMX生成项目
			我是卓波,很高兴你来看我的博客. 系列文章: stm32+lwip(一):使用STM32CubeMX生成项目 stm32+lwip(二):UDP测试 stm32+lwip(三):TCP测试 stm32 ... 
- xss挑战赛小记 0x03(xssgame)
			0x00 继续做xss吧 这次是xssgame 地址 http://www.xssgame.com/ 一共八关 学到了很多东西 0x01 啥也没有 <svg/onload="alert ... 
- 一步一步学Linq to sql(四):查询句法
			select 描述:查询顾客的公司名.地址信息 查询句法: var 构建匿名类型1 = from c in ctx.Customers select new { 公司名 = c.CompanyName ... 
- codevs 1214 线段覆盖/1643 线段覆盖 3
			1214 线段覆盖/1214 线段覆盖 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 给定x轴上的N(0< ... 
- 安装cloudera manager使用mysql作为元数据库
			1.首次安装好mysql数据库后,会生成一个随机密码,使用如下办法找到: cat /var/log/mysqld.log |grep password 2.首次安装好mysql数据库后,第一次登陆进去 ... 
- 一些可能有点用处的C#开发经验
			前言: 下个月就要去进行Java开发了,以后C#碰的就少了(可惜去年买了三本C#的书,几乎还是全新的……),平时一些经验都记在OneNote里面,现在收集整理出来,因为只能利用交接工作的打酱油的时间, ... 
- java通过句柄访问对象
			在Java里,任何东西都可看作对象.尽管将一切都“看作”对象,但操纵的标识符实际是指向一个对象的“句柄”(Handle),有的人将其称作一个“引用”,甚至一个“指针”. 主类型的数据成员可直接初始化, ... 
- vs code 代码格式化整理
			vs code格式化代码的快捷键如下:(来源于这里) On Windows Shift + Alt + F On Mac Shift + Option + F On Ubuntu Ctrl + Shi ... 
