题意:

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个
操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。
 
思路:
处理出这棵树的欧拉序,入栈时为这个点的正权,出栈时为这个点的负权
对于操作1,对x入栈点加a,出栈点减a
对于操作2,对x入栈点到x出栈点所有的点执行操作1
对于操作3,即查询点1的入栈点到x入栈点的点权和
 
在正常的区间加线段树中,有一个add,add对区间和sum[root]的贡献为(r-l+1)*add
对这一题,我们记入栈点的flg为1,出栈点的为-1,那么在flg求和的情况下,add对区间和的贡献为flg[root]*add
正常搞线段树即可
 
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<stack>
#include<queue>
#include<deque>
#include<set>
#include<vector>
#include<map>
#include<functional> #define fst first
#define sc second
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define lc root<<1
#define rc root<<1|1
#define lowbit(x) ((x)&(-x)) using namespace std; typedef double db;
typedef long double ldb;
typedef long long ll;
typedef long long LL;
typedef unsigned long long ull;
typedef pair<int,int> PI;
typedef pair<ll,ll> PLL; const db eps = 1e-;
const int mod = ;
const int maxn = 2e6+;
const int maxm = 2e6+;
const int inf = 0x3f3f3f3f;
const db pi = acos(-1.0); int n, m;
ll a[maxn];
vector<int>v[maxn];
int tot;
int in[maxn],out[maxn];//树上i的出、入在rk位置
ll rk[maxn];
int vis[maxn];//in 1 , out 0
void dfs(int x, int fa){
++tot;in[x]=tot;rk[tot]=a[x];vis[tot]=;
for(int i = ; i < (int)v[x].size(); i++){
int y = v[x][i];
if(y!=fa)dfs(y,x);
}
++tot;out[x]=tot;rk[tot]=-a[x];vis[tot]=;
}
ll flg[maxn],lazy[maxn];
ll sum[maxn];
void build(int l, int r, int root){
if(l==r){
if(vis[l])flg[root]=;
else flg[root]=-;
sum[root]=rk[l];
return;
}
int mid = (l+r)>>;
build(lson);
build(rson);
sum[root]=sum[lc]+sum[rc];
flg[root]=flg[lc]+flg[rc];
}
void pushdown(int l, int r, int root){
if(!lazy[root])return;
lazy[lc]+=lazy[root];
lazy[rc]+=lazy[root];
sum[lc]+=lazy[root]*flg[lc];
sum[rc]+=lazy[root]*flg[rc];
lazy[root]=;
return;
}
void update(int x, int y, int val, int l, int r, int root){
int mid = (l+r)>>;
if(x<=l&&r<=y){
lazy[root]+=val;
sum[root]+=val*flg[root];
return;
}
pushdown(l, r, root);
if(x<=mid)update(x,y,val,lson);
if(y>mid)update(x,y,val,rson);
sum[root]=sum[lc]+sum[rc];
return;
}
ll query(int x, int y, int l, int r, int root){
int mid = (l+r)>>;
if(x<=l&&r<=y)return sum[root];
pushdown(l, r, root);
ll ans = ;
if(x<=mid)ans+=query(x,y,lson);
if(y>mid)ans+=query(x,y,rson);
return ans;
} int main() {
scanf("%d %d", &n, &m);
for(int i = ; i <= n; i++){
scanf("%lld", &a[i]);
}
for(int i = ; i <= n-; i++){
int x, y;
scanf("%d %d" ,&x, &y);
v[x].pb(y);
v[y].pb(x);
}
dfs(,-);
build(,tot,);
while(m--){
int op, x, y;
scanf("%d", &op);
if(op==){
scanf("%d %d" ,&x ,&y);
update(in[x],in[x],y,,tot,);
update(out[x],out[x],y,,tot,);
}
else if(op==){
scanf("%d %d", &x ,&y);
update(in[x],out[x],y,,tot,);
}
else{
scanf("%d", &x);
printf("%lld\n",query(,in[x],,tot,));
}
}
return ;
}
/*
5 5
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3
*/

BZOJ 4034 [HAOI2015]树上操作(欧拉序+线段树)的更多相关文章

  1. BZOJ 4034: [HAOI2015]树上操作 [欧拉序列 线段树]

    题意: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有点的点权和. 显然树链剖分可做 ...

  2. 洛谷P3178 [HAOI2015]树上操作(dfs序+线段树)

    P3178 [HAOI2015]树上操作 题目链接:https://www.luogu.org/problemnew/show/P3178 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边 ...

  3. [luoguP3178] [HAOI2015]树上操作(dfs序 + 线段树 || 树链剖分)

    传送门 树链剖分固然可以搞. 但还有另一种做法,可以看出,增加一个节点的权值会对以它为根的整棵子树都有影响,相当于给整棵子树增加一个值. 而给以某一节点 x 为根的子树增加一个权值也会影响当前子树,节 ...

  4. BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )

    BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...

  5. bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4352  Solved: 1387[Submit][Stat ...

  6. bzoj 4034: [HAOI2015]树上操作 (树剖+线段树 子树操作)

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6779  Solved: 2275[Submit][Stat ...

  7. [BZOJ]4034: [HAOI2015]树上操作

    [HAOI2015]树上操作 传送门 题目大意:三个操作 1:a,b,c b节点权值+c 2:a,b,c 以b为根的子树节点权值全部+c 3:a,b 查询b到根路径的权值和. 题解:树链剖分 操作1 ...

  8. 洛谷 P3178 BZOJ 4034 [HAOI2015]树上操作

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...

  9. BZOJ 4034[HAOI2015]树上操作(树链剖分)

    Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点 ...

随机推荐

  1. keuectl命令

    Kubernetes命令行 kubectl用于运行Kubernetes集群命令的管理工具 kubectl命令行语法 kubectl [command] [TYPE] [NAME] [flags] co ...

  2. FlashFXP 5.0.0官方中文破解版,附文件下载地址和破解码

    FlashFXP 5.0.0官方中文破解版是一个功能强大的 FXP/FTP 软件,融合了一些其他优秀 FTP 软件的优点,如像 CuteFTP 一样可以比较文件夹,支持彩色文字显示:像 BpFTP 支 ...

  3. phpstudy nginx设置CORS跨域不起作用的可能解决方法

    今天搞了半天的跨域问题,想通过nginx配置跨域,希望以后本地调试程序都不用为这件事烦心.无非就是设置几个请求头: add_header Access-Control-Allow-Origin *; ...

  4. 小白学 Python 爬虫(40):爬虫框架 Scrapy 入门基础(七)对接 Selenium 实战

    人生苦短,我用 Python 前文传送门: 小白学 Python 爬虫(1):开篇 小白学 Python 爬虫(2):前置准备(一)基本类库的安装 小白学 Python 爬虫(3):前置准备(二)Li ...

  5. cogs 1361. 树 线段树

    1361. 树 ★   输入文件:treed.in   输出文件:treed.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 在一个凉爽的夏夜,xth和rabbit来到 ...

  6. Akka Java 文档 -- 容错

    [转自: http://blog.csdn.net/zjw10wei321/article/details/46911825] 容错 实际中的故障处理 容错案例图解 容错案例所有源码 创建新的监管策略 ...

  7. docker安装的gitlab的备份与恢复

    1.对docker容器安装gitlab备份 1) 查看容器id docker ps 2) 将容器备份成镜像文件 docker commit -a 'James' -m 'gitlab_backup' ...

  8. 基于Java+HttpClient+TestNG的接口自动化测试框架(四)-------参数存取处理

    在真正开始接口测试之前,我们需要对参数的处理进行梳理.这里所说的“参数”,既包含之前在xml中的配置(我们称之为全局参数),也包含在每一条用例中书写的param.全局参数为固定不变的,而根据接口相应获 ...

  9. 关于SOA架构设计的案例分析

    关于SOA架构设计的案例分析 面向服务的体系结构(SOA)是一个组件模型,它将应用程序的不同功能单元(称为服务)通过这些服务之间定义良好的接口和契约联系起来.它可以根据需求通过网络对松散耦合的粗粒度应 ...

  10. Node.js 官方文档中文版

    这目录也是醉了 . 列出跟没列出没两样