莫烦PyTorch学习笔记(四)——回归
下面的代码说明个整个神经网络模拟回归的过程,代码含有详细注释,直接贴下来了
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
#绘制散点图
x=torch.unsqueeze(torch.linspace(-,,),dim=)#x轴共一百个点
y=x.pow()+0.2*torch.rand(x.size())#x^2加上随机浮动
x,y = Variable(x) , Variable(y)
plt.scatter(x.data.numpy(),y.data.numpy())#把散点图画出来
#plt.show()
#神经网络模块
class Net(torch.nn.Module):#继承神经网络模块
def __init__(self,n_features,n_hidden,n_output):#初始化神经网络的超参数
super(Net,self).__init__()#调用父类神经网络模块的初始化方法,上面三行固定步骤,不用深究
self.hidden = torch.nn.Linear(n_features,n_hidden)#指定隐藏层有多少输入,多少输出
self.predict = torch.nn.Linear(n_hidden, n_output)#指定预测层有多少输入,多少输出
def forward(self,x):#搭建神经网络
x = F.relu(self.hidden(x))#积极函数激活加工经过隐藏层的x
x = self.predict(x)#隐藏层的数据经过预测层得到预测结果
return x
net = Net(,,)#声明一个类对象
print(net) plt.ion()#在Plt.ion和plt.ioff之间的代码,交互绘图
plt.show() #神经网络优化器,主要是为了优化我们的神经网络,使他在我们的训练过程中快起来,节省社交网络训练的时间。
optimizer = torch.optim.SGD(net.parameters(),lr = 0.5)#其实就是神经网络的反向传播,第一个参数是更新权重等参数,第二个对应的是学习率
loss_func = torch.nn.MSELoss()#代价损失函数 for t in range():
prediction = net(x)
loss = loss_func(prediction,y)#计算损失
optimizer.zero_grad()#梯度置零
loss.backward()#反向传播
optimizer.step()#计算结点梯度并优化,
if t % == :
plt.cla()# Clear axis即清除当前图形中的之前的轨迹
plt.scatter(x.data.numpy(),y.data.numpy())
plt.plot(x.data.numpy(),prediction.data.numpy(),'r-',lw=)
plt.text(0.5,,'Loss=%.4f' % loss.item())
plt.pause(0.1)
plt.ioff()
plt.show()

莫烦PyTorch学习笔记(四)——回归的更多相关文章
- 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)
莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...
- 莫烦pytorch学习笔记(七)——Optimizer优化器
各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as ...
- 莫烦PyTorch学习笔记(五)——模型的存取
import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed() ...
- 莫烦pytorch学习笔记(二)——variable
.简介 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Variable和tensor的区别和联系 Variable是篮子, ...
- 莫烦PyTorch学习笔记(六)——批处理
1.要点 Torch 中提供了一种帮你整理你的数据结构的好东西, 叫做 DataLoader, 我们能用它来包装自己的数据, 进行批训练. 而且批训练可以有很多种途径. 2.DataLoader Da ...
- 莫烦 - Pytorch学习笔记 [ 二 ] CNN ( 1 )
CNN原理和结构 观点提出 关于照片的三种观点引出了CNN的作用. 局部性:某一特征只出现在一张image的局部位置中. 相同性: 同一特征重复出现.例如鸟的羽毛. 不变性:subsampling下图 ...
- 莫烦 - Pytorch学习笔记 [ 一 ]
1. Numpy VS Torch #相互转换 np_data = torch_data.numpy() torch_data = torch.from_numpy(np_data) #abs dat ...
- 莫烦PyTorch学习笔记(五)——分类
import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.p ...
- 莫烦PyTorch学习笔记(三)——激励函数
1. sigmod函数 函数公式和图表如下图 在sigmod函数中我们可以看到,其输出是在(0,1)这个开区间内,这点很有意思,可以联想到概率,但是严格意义上讲,不要当成概率.sigmod函数 ...
随机推荐
- spark入门到精通(后续开始学习)
早几年国内外研究者和业界比较关注的是在 Hadoop 平台上的并行化算法设计.然而, HadoopMapReduce 平台由于网络和磁盘读写开销大,难以高效地实现需要大量迭代计算的机器学习并行化算法. ...
- 干货:Java正确获取客户端真实IP方法整理
在JSP里,获取客户端的IP地址的方法是:request.getRemoteAddr(),这种方法在大部分情况下都是有效的.但是在通过了Apache,Squid等反向代理软件就不能获取到客户端的真实I ...
- Parallels Desktop Centos 设置IP
参考链接 Parallels Desktop虚拟的Centos系统设置静态IP连网 https://blog.csdn.net/hotdust/article/details/53812953#com ...
- Myeclipse配置tomcat和jdk
1.打开Myeclipse,Windows--preference--出现如下窗口.Browse为导入解压的tomcat路径. 2.配置jdk.使用哪个tomcat,就配置哪个tomcat下的jdk, ...
- 【POJ】2253 Frogger
= =.请用C++提交.. 如果有朋友能告诉我G++和C++交题什么机制..我感激不尽.G++杀我. 题目链接:http://poj.org/problem?id=2253 题意:青蛙A要去找B约会, ...
- HduOJ 2162 - Primes
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2161 题意:判断n是不是素数,输入到0停止.题目规定1 2 都不是素数. 题解:筛素数.老题目.不过这 ...
- libgdx 启动者(个人翻译,还请不吝赐教)类和配置
本文章翻译自libGDX官方wiki,.转载请注明出处:http://blog.csdn.net/kent_todo/article/details/37942047 libGDX官方网址:http: ...
- shell 命令 进程相关
1. 进程标识号PID 唯一性 pid 为0 内核进程,linux内核创建 pid 为1 init进程,系统最早创建的进程,init是所有用户进程的祖先 2. 查看系统进程信息 (1)[ ...
- JQuery Ajax 向后台传参方式
在jquery的ajax函数中,可以传入3种类型的数据 文本:"uname=alice&mobileIpt=110&birthday=1983-05-12" jso ...
- spring整合shiro框架
上一篇文章已经对shiro框架做了一定的介绍,这篇文章讲述使用spring整合shiro框架,实现用户认证已经权限控制 1.搭建环境 这里不在赘述spring环境的搭建,可以简单的搭建一个ssm框架, ...