题目大意:

网址:https://www.luogu.org/problemnew/show/P2303
大意:给定一个N,求\(\Sigma_{i=1}^N gcd(i, N);\)。

题目解法:

首先\(gcd(i,N)\)肯定为\(N\)的一个因子,也就是说\(gcd(i,N)\)的取值其实不多。
那么对于每一个结果分开考虑:
\(N\)唯一分解后:\(N = a_1^{k_1} \times a_2^{k_2} \times a_3^{k_3} ...\)
那么考虑一下当 \(gcd(T,N) = a\) 的时候:有\(T = R \times a\),并且\(gcd(\frac{N}{a},R) == 1\)
那么满足条件的\(R\)的个数为\(Φ(\frac{N}{a})\)个。(欧拉函数\(phi\)的定义)。
所以当 \(gcd(i,N)=a\) 时,总贡献为 \(a\timesΦ(\frac{N}{a})\)
所以我们的答案\(Ans = \Sigma_{i=1}^N([ d|N ]\times d\times Φ(\frac{N}{d}));\)
分析一下复杂度:枚举因子是\(O(\sqrt{N})\)的,求解因子的\(phi\)也是\(O(\sqrt{N})\)的。
所以理论时间复杂度为\(O(N)\),但是非常的不满(因子肯定没有\(\sqrt{N}\)个)。空间复杂度为\(O(1)\)。

具体实现代码:

#include<bits/stdc++.h>
#define ll long long
#define gi(x) scanf("%lld",&x)
using namespace std;

ll n,m,phi,Ans;
ll Eule(ll x){
    phi = x;
    for(ll e = 2;e <= sqrt(x); e ++){
        if(x%e)continue;
        while(!(x%e))x = x/e;
        phi = phi/e*(e-1);
    }
    if(x != 1)phi = phi/x*(x-1);
    return phi;
}

int main(){
    gi(n); m = sqrt(n);
    for(ll i = 1; i*i < n; i ++)
        if(!(n%i))Ans += i*Eule(n/i) + (n/i)*Eule(i);
    if(m*m==n)Ans += m*Eule(m);
    cout<<Ans;  return 0;
}

[SDOI2012]Longge的问题的更多相关文章

  1. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  2. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  3. BZOJ 2705: [SDOI2012]Longge的问题 GCD

    2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  4. bzoj 2705: [SDOI2012]Longge的问题 歐拉函數

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1035  Solved: 669[Submit][S ...

  5. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

  6. BZOJ 2705: [SDOI2012]Longge的问题( 数论 )

    T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...

  7. 洛谷 P2303 [SDOi2012]Longge的问题 解题报告

    P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...

  8. BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】

    BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...

  9. 【bzoj2705】[SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2507  Solved: 1531[Submit][ ...

  10. [SDOi2012]Longge的问题 (数论)

    Luogu2303 [SDOi2012]Longge的问题 题目 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N, ...

随机推荐

  1. 获取网站证书的两种方法(wireshark or firefox nightly)

    一.使用Wireshark 截取数据包的方式 1. wireshark软件需要使用管理员权限运行,开始捕获后,按下ctrl + f,查找证书所在分组,从source 和destination 栏可以看 ...

  2. js压缩上传图片

    初学有不当之处,请多多指点, <body> <div class="cc"> <input type="file" id=&quo ...

  3. NFS配置及使用

    什么是NFS NFS(Network File System)即网络文件系统,是FreeBSD支持的文件系统中的一种,它允许网络中的计算机之间通过TCP/IP网络共享存储.在NFS的应用中,本地NFS ...

  4. 揽货最短路径解决方案算法 - C# 蚁群优化算法实现

    需求为(自己编的,非实际项目): 某配送中心进行揽货,目标客户数为50个客户,配送中心目前的运力资源如下: 现有车辆5台 单台运力最大行驶距离200千米 单台运力最大载重公斤1吨 问:运力怎样走法才能 ...

  5. Git hook实现自动部署

    Git Hook 是 Git 提供的一个钩子,能被特定的事件触发后调用.其实,更通俗的讲,当你设置了 Git Hook 后,只要你的远程仓库收到一次 push 之后,Git Hook 就能帮你执行一次 ...

  6. NDK 开发中,各种指令集的坑,arm64

          最近在NDK开发中遇到了一个奇怪的问题,希望记录下,可以帮到大家:         我编译了一些 .so 动态库,只编译了armeabi-v7a.armeabi 指令集,其它指令集编译不了 ...

  7. explorer.exe 该文件没有与之关联的程序来执行该操作

    删了点右键的东西搞出来的问题 其实就是关联出错了,解决:(新建一个temp.reg,内容如下,然后双击导入注册表即可) Windows Registry Editor Version 5.00 [[H ...

  8. BloomFilter(布隆过滤器)

    原文链接:http://blog.csdn.net/qq_38646470/article/details/79431659 1.概念: 如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保 ...

  9. yaf框架学习文件配置

    文件配置: 在配置php支持yaf的时候,可以设置一个参数yaf.environ:把本地开发设置成develop.测试环境配置成test.生产环境配置成product. [yaf] extension ...

  10. sqlalchemy和flask-sqlalchemy几种分页操作

    sqlalchemy中使用query查询,而flask-sqlalchemy中使用basequery查询,他们是子类与父类的关系 假设 page_index=1,page_size=10:所有分页查询 ...