Nowadays, I am reading D.J.Benson's nice book, volume I of Representations and cohomology. I found it has a nice description on Dynkin diagrams. So I want to make a note on it and on it here. If the application is successful, I will have more time on Mathematiques intersting me. If the time permits, I will make anther note about the relationship of root system and Dynkin diagrams.

Contents

Dynkin diagrams and Euclidean diagrams

The following labeled graphs are called Dynkin diagrams

  • $A_n$($n\geq1$) 
  • $B_n$($n\geq 2$)
  • $C_n$($n\geq 2$)
  • $D_n$($n\geq 4$)
  • $E_6$; $E_7$; $E_8$
  • $F_4$

  • $G_2$

The foot index illustrates the number of nodes. And and  stands a edge labelled by $(1,1)$, $(2,1)$ and $(3,1)$ respectively.

The following labeled graphs are called Euclidean diagrams

  • $\tilde{A}_n$($n\geq 1$); $\tilde{A}_{11}$; $\tilde{A}_{12}$.
  • $\tilde{B}_n$($n\geq 3$)
  • $\tilde{C}_n$($n\geq 3$)
  • $\tilde{D}_n$($n\geq 5$)
  • $\widetilde{BC}_n$($n\geq 3$)
  • $\widetilde{BD}_n$($n\geq 4$)
  • $\widetilde{CD}_n$($n\geq 4$)
  • $\tilde{E}_6$; $\tilde{E}_7$; $\tilde{E}_8$ 

  • $\tilde{F}_{41}$; $\tilde{F}_{42}$

  • $\tilde{G}_{21}$; $\tilde{G}_{22}$

The sum of foot index illustrates the number of nodes.

Cartan matrix and characterization of Dynkin diagrams using subadditve functions

Definition. For a labelled graph $G=(V,E)$, defined its Cartan matrix $(c_{xy})_{x,y\in V}$ where $$c_{xy}=2\delta_{xy}-\sum_{\textrm{all edges }x\stackrel{(a,b)}\longrightarrow y} a$$where $\delta_{xy}=1$ if $x=y$ and vanishes if $x\neq y$. A function $n: V\to \mathbb{Z}_{>0}$ is called subadditive if $$\forall y\in V, \qquad \sum_{x\in V} n_xc_{xy}\geq 0$$ And is called additive if $$\forall y\in V, \qquad \sum_{x\in V} n_xc_{xy}= 0$$ Clearly, subadditivity implies additivity.

We will show that Dynkin diagram and Euclidean diagrams are the only finite connected diagrams admitting a subadditive function, and Euclidean diagrams are the only ones admitting an addtive function.

We need three lemmas.

Lemma 1. Any finite connected labelled graph $T$, either $T$ is a Dynkin diagram or there is a Euclidean diagram smaller than $T$. Where "smaller" means both "subgraph" and "smaller" in the numbers of the label. Note that in the definition of labelled graph, all the number in labels are taken to be positive integers.

Proof is just exclude the possibilities of not being Dynkin diagram.

Lemma 2. Suppose $T$ and $T'$ are connected labelled graphs and $T$ is strickly smaller than $T'$, if $n$ is a subadditve function on $T'$, then the restriction of $n$ over $T$ is subadditve but not additive.

Proof. For any vertex $y$ of $T$, we have $$0\leq \sum_x n_xc'_{xy}=2n_y-\sum_{\textrm{all edges } x\stackrel{(a,b)}\longrightarrow y\textrm{ in $T'$}}n_x a\geq  2n_y-\sum_{\textrm{all edges } x\stackrel{(a,b)}\longrightarrow y\textrm{ in $T$}}n_x a=\sum_x n_xc_{xy}$$Since $T$ is strictly smaller, the inequality can not achieve for some $y$. The proof is complete. $\square$

Lemma 3. Any finite connected labelled graph $T$, if $T^{\mathsf{op}}$ admits an additive function, then any subadditve function over $T$ is additive.

Proof.  Assume $T^{\mathsf{op}}$ admits an additive function $n$, then $\sum c_{yx}n_x=0$. Then for any subadditive function $m$ over $T$, we have$$0=\sum_ym_y\bigg(\sum_{x} c_{yx}n_x\bigg)=\sum_{x}n_x \bigg(\sum_{y}m_yc_{yx}\bigg)$$The sum is a series of non-negetive integer, so we have $\sum_{y}m_yc_{yx}=0$. $\square$

And it suffices to prove there exists an additive function on each Euclidean diagrams. As following

(To check the additivity, just check that the sum of number "come in" equals to 2 times of the number of point. )

Now, we can conclude the discription of Euclidean diagrams and Dynkin diagrams

Theroem. If a finite connected labelled graph $T$ admits a subaddtive function iff $T$ is either a Dynkin diagram or a Euclidean diagram. If furthermore, $T$ admits an additive function iff$T$ is a Euclidean diagram.

Proof. By the above lemmas.

Characterization using positive definity of Cartan's matrix

Using the characterization above, one can easily deriver the following characerization

Theroem. Given a finite connected labelled graph $T$, let $C$ be its Cartan matrix. $C$ is semidefinite iff $T$ is either a Dynkin diagram or a Euclidean diagram. Furthermore, $C$ is positive definite iff $T$ is a Dynkin diagram.

Proof. For an Euclidean diagram, let $n$ be an additive function, note that the condition of additivity implies for any fixed $x$, $\sum_{y\neq x}\frac{n_y c_{yx}}{n_x}=-2$, then$$\begin{array}{rl}\sum_{x,y\in V}a_xa_yc_{xy} & =2\sum_{x\in V}a_x^2+\sum_{x\neq y} a_xa_yc_{xy} \\ & =-\sum_{x\in V}\frac{a_x^2n_yc_{yx}}{n_x}+\sum_{x\neq y} a_xa_yc_{xy}   \\& = -\frac{1}{2}\sum_{x\neq y}\big(\frac{a_x^2n_yc_{yx}}{n_x}+\frac{a_y^2n_xc_{xy}}{n_y}\big)+\sum_{x\neq y} a_xa_yc_{xy} \\ & =-\frac{1}{2}\sum_{x\neq y} n_xn_yc_{xy}\big(\frac{a_x}{n_x}-\frac{a_y}{n_y}\big)^2\geq 0\end{array}$$ Then, it is not difficult to see that the Cartan matrix is positive definite for Dynkin diagram, merely because Dynkin diagrams are exactly the graph strictly smaller than Euclidean diagrams. To prove when $T$ is neither a Dynkin diagram nor a Euclidean diagram. By the lemma above, there are some Euclidean diagram $T'$ strictly smaller than $T$. If $T$ contains all points of $T'$, then $(n_x)$ such that $\sum n_xn_yc_{xy}<0$, otherwise, pick a point, say $v$, in $T$ but not in $T'$, then $n'_x=\begin{cases}n_x & \textrm{$x$ in $T$} \\ \epsilon & x=v \\ 0 & \textrm{otherwise}\end{cases}$, then $$\begin{array}{rl}\sum n'_xn'_y c_{xy} &  =\sum n_xn_yc_{xy}+2\epsilon^2+\underbrace{\bigg(\sum_{x\in V}c_{xv}\bigg)}_{<0}\epsilon \\ & \leq 0+ 2\epsilon^2+\underbrace{\bigg(\sum_{x\in V}c_{xv}\bigg)}_{<0}\epsilon\end{array}$$Take $\epsilon$ sufficient small, the above is strictly negetive. $\square$

Characterization of Dynkin diagrams的更多相关文章

  1. EF:split your EDMX file into multiple diagrams

    我们可以把一个EDMX文件划分为多个类图: 1.在VS中打开EDMX设计器: 2.切换到“模型浏览器”属性设置窗口: 3.在diagrams上右键菜单中选择“添加新的关系图”: 4.在原来的关系图上可 ...

  2. How to generate UML Diagrams from Java code in Eclipse

    UML diagrams compliment inline documentation ( javadoc ) and allow to better explore / understand a ...

  3. codeforces Diagrams & Tableaux1 (状压DP)

    http://codeforces.com/gym/100405 D题 题在pdf里 codeforces.com/gym/100405/attachments/download/2331/20132 ...

  4. (转) Deep learning architecture diagrams

    FastML Machine learning made easy RSS Home Contents Popular Links Backgrounds About Deep learning ar ...

  5. Class diagrams

    So far we have seen stack diagrams, which show the state of a program, and object diagrams, which sh ...

  6. [RxJS] Marble diagrams in ASCII form

    There are many operators available, and in order to understand them we need to have a simple way of ...

  7. 条形图(diagrams)

    条形图(diagrams) 题目描述 小 虎刚上了幼儿园,老师让他做一个家庭作业:首先画3行格子,第一行有3个格子,第二行有2个格子,第三行有3个格子.每行的格子从左到右可以放棋子,但要 求除第一行外 ...

  8. Generating Sankey Diagrams from rCharts

    A couple of weeks or so ago, I picked up an inlink from an OCLC blog post about Visualizing Network ...

  9. Reliability diagrams

    Reliability diagrams (Hartmann et al. 2002) are simply graphs of the Observed frequency of an event ...

随机推荐

  1. php原生代码实现explode函数功能

    在开始代码前要先介绍几个PHP函数: explode()   把字符串打散成数组 strpos()     返回字符串在另一个字符串第一次出现的位置(对大小写敏感) strstr()       查找 ...

  2. C#版 - Leetcode49 - 字母异位词分组 - 题解

    C#版 - Leetcode49 - 字母异位词分组 - 题解 Leetcode49.Group Anagrams 在线提交: https://leetcode.com/problems/group- ...

  3. KnockoutJS-快速入门

    虽然在WPF中接触过MVVM模式,可是刚开始在Web中接触到Knockout.JS让我大吃一惊,简化了好多工作量,原来可能需要一大堆的JS脚本完成的工作量,被释放许多.接触KnockoutJS一年多了 ...

  4. KnockoutJS-模板绑定

    对于knockoutJS来讲,模板绑定和Mapping插件绑定是十分重要的功能,虽然模板绑定在我工作中用的及其少,但模板绑定的重要性不可忽视,在其他前端框架中,如Angular.Vue等等,模板存在的 ...

  5. Angular动态创建组件之Portals

    这篇文章主要介绍使用Angular api 和 CDK Portals两种方式实现动态创建组件,另外还会讲一些跟它相关的知识点,如:Angular多级依赖注入.ViewContainerRef,Por ...

  6. Spring Cloud Alibaba基础教程:使用Sentinel实现接口限流

    最近管点闲事浪费了不少时间,感谢网友libinwalan的留言提醒.及时纠正路线,继续跟大家一起学习Spring Cloud Alibaba. Nacos作为注册中心和配置中心的基础教程,到这里先告一 ...

  7. 斑马打印机的安装调试,生成PDF

    1.  我使用的斑马打印机GK888T.有问题打客服,耐心等待.售后电话4006456456得到了解决. 2.  我遇到的问题是打印一张之后指示灯变为红灯,时好时坏.解决方案,长按指示键,待指示灯连续 ...

  8. Jquery简单学习

    Jquery是一个JavaScript的函数库,Jquery是一个写得少但做的多的轻量级JavaScript库 Jquery用美元$定义. Jquery的action执行对元素的操作 文档就绪函数: ...

  9. IT企业级应⽤开发模式演化

    前端研发流程 传统To B类系统的研发模式 探索 & 思考设计模式库(DPL)设计语⾔设计语⾔详解基于MVVM模式的Web框架 & UI库优化后的开发模式实现价值实践 赋能 赋能授权( ...

  10. 你必须知道的.net读书笔记之第二回深入浅出关键字---对抽象编程:接口和抽象类

    请记住,面向对象思想的一个最重要的原则就是:面向接口编程. 借助接口和抽象类,23个设计模式中的很多思想被巧妙的实现了,我认为其精髓简单说来就是:面向抽象编程. 抽象类应主要用于关系密切的对象,而接口 ...