Characterization of Dynkin diagrams
Nowadays, I am reading D.J.Benson's nice book, volume I of Representations and cohomology. I found it has a nice description on Dynkin diagrams. So I want to make a note on it and on it here. If the application is successful, I will have more time on Mathematiques intersting me. If the time permits, I will make anther note about the relationship of root system and Dynkin diagrams.
Contents
- Dynkin diagrams and Euclidean diagrams
- Cartan matrix and characterization of Dynkin diagrams using subadditve functions
- Characterization using positive definity of Cartan's matrix
Dynkin diagrams and Euclidean diagrams
The following labeled graphs are called Dynkin diagrams
- $A_n$($n\geq1$)

- $B_n$($n\geq 2$)

- $C_n$($n\geq 2$)

- $D_n$($n\geq 4$)

- $E_6$
; $E_7$
; $E_8$
$F_4$

$G_2$

The foot index illustrates the number of nodes. And
,
and
stands a edge labelled by $(1,1)$, $(2,1)$ and $(3,1)$ respectively.
The following labeled graphs are called Euclidean diagrams
- $\tilde{A}_n$($n\geq 1$)
; $\tilde{A}_{11}$
; $\tilde{A}_{12}$
. - $\tilde{B}_n$($n\geq 3$)

- $\tilde{C}_n$($n\geq 3$)

- $\tilde{D}_n$($n\geq 5$)

- $\widetilde{BC}_n$($n\geq 3$)

- $\widetilde{BD}_n$($n\geq 4$)

- $\widetilde{CD}_n$($n\geq 4$)

$\tilde{E}_6$
; $\tilde{E}_7$
; $\tilde{E}_8$ 
$\tilde{F}_{41}$
; $\tilde{F}_{42}$
$\tilde{G}_{21}$
; $\tilde{G}_{22}$
The sum of foot index illustrates the number of nodes.
Cartan matrix and characterization of Dynkin diagrams using subadditve functions
Definition. For a labelled graph $G=(V,E)$, defined its Cartan matrix $(c_{xy})_{x,y\in V}$ where $$c_{xy}=2\delta_{xy}-\sum_{\textrm{all edges }x\stackrel{(a,b)}\longrightarrow y} a$$where $\delta_{xy}=1$ if $x=y$ and vanishes if $x\neq y$. A function $n: V\to \mathbb{Z}_{>0}$ is called subadditive if $$\forall y\in V, \qquad \sum_{x\in V} n_xc_{xy}\geq 0$$ And is called additive if $$\forall y\in V, \qquad \sum_{x\in V} n_xc_{xy}= 0$$ Clearly, subadditivity implies additivity.
We will show that Dynkin diagram and Euclidean diagrams are the only finite connected diagrams admitting a subadditive function, and Euclidean diagrams are the only ones admitting an addtive function.
We need three lemmas.
Lemma 1. Any finite connected labelled graph $T$, either $T$ is a Dynkin diagram or there is a Euclidean diagram smaller than $T$. Where "smaller" means both "subgraph" and "smaller" in the numbers of the label. Note that in the definition of labelled graph, all the number in labels are taken to be positive integers.
Proof is just exclude the possibilities of not being Dynkin diagram.
Lemma 2. Suppose $T$ and $T'$ are connected labelled graphs and $T$ is strickly smaller than $T'$, if $n$ is a subadditve function on $T'$, then the restriction of $n$ over $T$ is subadditve but not additive.
Proof. For any vertex $y$ of $T$, we have $$0\leq \sum_x n_xc'_{xy}=2n_y-\sum_{\textrm{all edges } x\stackrel{(a,b)}\longrightarrow y\textrm{ in $T'$}}n_x a\geq 2n_y-\sum_{\textrm{all edges } x\stackrel{(a,b)}\longrightarrow y\textrm{ in $T$}}n_x a=\sum_x n_xc_{xy}$$Since $T$ is strictly smaller, the inequality can not achieve for some $y$. The proof is complete. $\square$
Lemma 3. Any finite connected labelled graph $T$, if $T^{\mathsf{op}}$ admits an additive function, then any subadditve function over $T$ is additive.
Proof. Assume $T^{\mathsf{op}}$ admits an additive function $n$, then $\sum c_{yx}n_x=0$. Then for any subadditive function $m$ over $T$, we have$$0=\sum_ym_y\bigg(\sum_{x} c_{yx}n_x\bigg)=\sum_{x}n_x \bigg(\sum_{y}m_yc_{yx}\bigg)$$The sum is a series of non-negetive integer, so we have $\sum_{y}m_yc_{yx}=0$. $\square$
And it suffices to prove there exists an additive function on each Euclidean diagrams. As following

(To check the additivity, just check that the sum of number "come in" equals to 2 times of the number of point. )
Now, we can conclude the discription of Euclidean diagrams and Dynkin diagrams
Theroem. If a finite connected labelled graph $T$ admits a subaddtive function iff $T$ is either a Dynkin diagram or a Euclidean diagram. If furthermore, $T$ admits an additive function iff$T$ is a Euclidean diagram.
Proof. By the above lemmas.
Characterization using positive definity of Cartan's matrix
Using the characterization above, one can easily deriver the following characerization
Theroem. Given a finite connected labelled graph $T$, let $C$ be its Cartan matrix. $C$ is semidefinite iff $T$ is either a Dynkin diagram or a Euclidean diagram. Furthermore, $C$ is positive definite iff $T$ is a Dynkin diagram.
Proof. For an Euclidean diagram, let $n$ be an additive function, note that the condition of additivity implies for any fixed $x$, $\sum_{y\neq x}\frac{n_y c_{yx}}{n_x}=-2$, then$$\begin{array}{rl}\sum_{x,y\in V}a_xa_yc_{xy} & =2\sum_{x\in V}a_x^2+\sum_{x\neq y} a_xa_yc_{xy} \\ & =-\sum_{x\in V}\frac{a_x^2n_yc_{yx}}{n_x}+\sum_{x\neq y} a_xa_yc_{xy} \\& = -\frac{1}{2}\sum_{x\neq y}\big(\frac{a_x^2n_yc_{yx}}{n_x}+\frac{a_y^2n_xc_{xy}}{n_y}\big)+\sum_{x\neq y} a_xa_yc_{xy} \\ & =-\frac{1}{2}\sum_{x\neq y} n_xn_yc_{xy}\big(\frac{a_x}{n_x}-\frac{a_y}{n_y}\big)^2\geq 0\end{array}$$ Then, it is not difficult to see that the Cartan matrix is positive definite for Dynkin diagram, merely because Dynkin diagrams are exactly the graph strictly smaller than Euclidean diagrams. To prove when $T$ is neither a Dynkin diagram nor a Euclidean diagram. By the lemma above, there are some Euclidean diagram $T'$ strictly smaller than $T$. If $T$ contains all points of $T'$, then $(n_x)$ such that $\sum n_xn_yc_{xy}<0$, otherwise, pick a point, say $v$, in $T$ but not in $T'$, then $n'_x=\begin{cases}n_x & \textrm{$x$ in $T$} \\ \epsilon & x=v \\ 0 & \textrm{otherwise}\end{cases}$, then $$\begin{array}{rl}\sum n'_xn'_y c_{xy} & =\sum n_xn_yc_{xy}+2\epsilon^2+\underbrace{\bigg(\sum_{x\in V}c_{xv}\bigg)}_{<0}\epsilon \\ & \leq 0+ 2\epsilon^2+\underbrace{\bigg(\sum_{x\in V}c_{xv}\bigg)}_{<0}\epsilon\end{array}$$Take $\epsilon$ sufficient small, the above is strictly negetive. $\square$

Characterization of Dynkin diagrams的更多相关文章
- EF:split your EDMX file into multiple diagrams
我们可以把一个EDMX文件划分为多个类图: 1.在VS中打开EDMX设计器: 2.切换到“模型浏览器”属性设置窗口: 3.在diagrams上右键菜单中选择“添加新的关系图”: 4.在原来的关系图上可 ...
- How to generate UML Diagrams from Java code in Eclipse
UML diagrams compliment inline documentation ( javadoc ) and allow to better explore / understand a ...
- codeforces Diagrams & Tableaux1 (状压DP)
http://codeforces.com/gym/100405 D题 题在pdf里 codeforces.com/gym/100405/attachments/download/2331/20132 ...
- (转) Deep learning architecture diagrams
FastML Machine learning made easy RSS Home Contents Popular Links Backgrounds About Deep learning ar ...
- Class diagrams
So far we have seen stack diagrams, which show the state of a program, and object diagrams, which sh ...
- [RxJS] Marble diagrams in ASCII form
There are many operators available, and in order to understand them we need to have a simple way of ...
- 条形图(diagrams)
条形图(diagrams) 题目描述 小 虎刚上了幼儿园,老师让他做一个家庭作业:首先画3行格子,第一行有3个格子,第二行有2个格子,第三行有3个格子.每行的格子从左到右可以放棋子,但要 求除第一行外 ...
- Generating Sankey Diagrams from rCharts
A couple of weeks or so ago, I picked up an inlink from an OCLC blog post about Visualizing Network ...
- Reliability diagrams
Reliability diagrams (Hartmann et al. 2002) are simply graphs of the Observed frequency of an event ...
随机推荐
- 中国IT史上两大严重事故对我们的警醒及预防措施
20190121 一,历史回顾:20150528携程运维大事故 2015年5月28日上午11点开始,携程旅行网官方网站突然显示404错误页,App也无法使用,业务彻底中断. 据称是因为乌云网公布了携程 ...
- python爬虫数据解析之xpath
xpath是一门在xml文档中查找信息的语言.xpath可以用来在xml文档中对元素和属性进行遍历. 在xpath中,有7中类型的节点,元素,属性,文本,命名空间,处理指令,注释及根节点. 节点 首先 ...
- Kubernetes 笔记 10 Job 机器人加工厂
本文首发于我的公众号 Linux云计算网络(id: cloud_dev),专注于干货分享,号内有 10T 书籍和视频资源,后台回复「1024」即可领取,欢迎大家关注,二维码文末可以扫. Hi,大家好, ...
- 【工利其器】必会工具之(二)Android开发者官网篇
前言 当刚开始踏入Android程序员这个行业的时候,想必绝大多数的人都和笔者一样,热血沸腾,激情四射,买了很多讲解Android开发的书籍.当开发某个功能需要学习某方面知识的时候,大家又成了“面向百 ...
- 全文检索-Elasticsearch (四) elasticsearch.net 客户端
本篇摘自elasticsearch.net search入门使用指南中文版(翻译) 原文:http://edu.dmeiyang.com/book/nestusing.html elasticsear ...
- SpringBoot + Spring Security 学习笔记(四)记住我功能实现
记住我功能的基本原理 当用户登录发起认证请求时,会通过UsernamePasswordAuthenticationFilter进行用户认证,认证成功之后,SpringSecurity 调用前期配置好的 ...
- dubbo不完全指南
Dubbo架构 节点角色说明 节点 角色说明 Provider 暴露服务的服务提供方 Consumer 调用远程服务的服务消费方 Registry 服务注册与发现的注册中心 Monitor 统计服务的 ...
- Linux计划任务及压缩归档(week2_day1)--技术流ken
计划任务介绍 我们可以通过一些设置.来让电脑定时提醒我们该做什么事了.或者我们提前设置好,告诉电脑你几点做什么几点做什么,这种我们就叫它定时任务.而遇到一些需要执行的事情或任务.我们也可以通过命令来告 ...
- c#进阶一:使用ILDASM来查看c#中间语言
平时工作的时候总是使用ctrl c+ctrl v去快速开发实现业务功能,但是在工作之余,我们也应该要注意静下心来去学习和提高自己.进阶的文章随性来写,不定时更新.希望可以和大家共同学习,共同进步.今天 ...
- MySQL 笔记整理(12) --为什么我的MySQL会“抖”一下?
笔记记录自林晓斌(丁奇)老师的<MySQL实战45讲> (本篇内图片均来自丁奇老师的讲解,如有侵权,请联系我删除) 12) --为什么我的MySQL会“抖”一下? 断更了一段时间,因为这几 ...