Characterization of Dynkin diagrams
Nowadays, I am reading D.J.Benson's nice book, volume I of Representations and cohomology. I found it has a nice description on Dynkin diagrams. So I want to make a note on it and on it here. If the application is successful, I will have more time on Mathematiques intersting me. If the time permits, I will make anther note about the relationship of root system and Dynkin diagrams.
Contents
- Dynkin diagrams and Euclidean diagrams
- Cartan matrix and characterization of Dynkin diagrams using subadditve functions
- Characterization using positive definity of Cartan's matrix
Dynkin diagrams and Euclidean diagrams
The following labeled graphs are called Dynkin diagrams
- $A_n$($n\geq1$)

- $B_n$($n\geq 2$)

- $C_n$($n\geq 2$)

- $D_n$($n\geq 4$)

- $E_6$
; $E_7$
; $E_8$
$F_4$

$G_2$

The foot index illustrates the number of nodes. And
,
and
stands a edge labelled by $(1,1)$, $(2,1)$ and $(3,1)$ respectively.
The following labeled graphs are called Euclidean diagrams
- $\tilde{A}_n$($n\geq 1$)
; $\tilde{A}_{11}$
; $\tilde{A}_{12}$
. - $\tilde{B}_n$($n\geq 3$)

- $\tilde{C}_n$($n\geq 3$)

- $\tilde{D}_n$($n\geq 5$)

- $\widetilde{BC}_n$($n\geq 3$)

- $\widetilde{BD}_n$($n\geq 4$)

- $\widetilde{CD}_n$($n\geq 4$)

$\tilde{E}_6$
; $\tilde{E}_7$
; $\tilde{E}_8$ 
$\tilde{F}_{41}$
; $\tilde{F}_{42}$
$\tilde{G}_{21}$
; $\tilde{G}_{22}$
The sum of foot index illustrates the number of nodes.
Cartan matrix and characterization of Dynkin diagrams using subadditve functions
Definition. For a labelled graph $G=(V,E)$, defined its Cartan matrix $(c_{xy})_{x,y\in V}$ where $$c_{xy}=2\delta_{xy}-\sum_{\textrm{all edges }x\stackrel{(a,b)}\longrightarrow y} a$$where $\delta_{xy}=1$ if $x=y$ and vanishes if $x\neq y$. A function $n: V\to \mathbb{Z}_{>0}$ is called subadditive if $$\forall y\in V, \qquad \sum_{x\in V} n_xc_{xy}\geq 0$$ And is called additive if $$\forall y\in V, \qquad \sum_{x\in V} n_xc_{xy}= 0$$ Clearly, subadditivity implies additivity.
We will show that Dynkin diagram and Euclidean diagrams are the only finite connected diagrams admitting a subadditive function, and Euclidean diagrams are the only ones admitting an addtive function.
We need three lemmas.
Lemma 1. Any finite connected labelled graph $T$, either $T$ is a Dynkin diagram or there is a Euclidean diagram smaller than $T$. Where "smaller" means both "subgraph" and "smaller" in the numbers of the label. Note that in the definition of labelled graph, all the number in labels are taken to be positive integers.
Proof is just exclude the possibilities of not being Dynkin diagram.
Lemma 2. Suppose $T$ and $T'$ are connected labelled graphs and $T$ is strickly smaller than $T'$, if $n$ is a subadditve function on $T'$, then the restriction of $n$ over $T$ is subadditve but not additive.
Proof. For any vertex $y$ of $T$, we have $$0\leq \sum_x n_xc'_{xy}=2n_y-\sum_{\textrm{all edges } x\stackrel{(a,b)}\longrightarrow y\textrm{ in $T'$}}n_x a\geq 2n_y-\sum_{\textrm{all edges } x\stackrel{(a,b)}\longrightarrow y\textrm{ in $T$}}n_x a=\sum_x n_xc_{xy}$$Since $T$ is strictly smaller, the inequality can not achieve for some $y$. The proof is complete. $\square$
Lemma 3. Any finite connected labelled graph $T$, if $T^{\mathsf{op}}$ admits an additive function, then any subadditve function over $T$ is additive.
Proof. Assume $T^{\mathsf{op}}$ admits an additive function $n$, then $\sum c_{yx}n_x=0$. Then for any subadditive function $m$ over $T$, we have$$0=\sum_ym_y\bigg(\sum_{x} c_{yx}n_x\bigg)=\sum_{x}n_x \bigg(\sum_{y}m_yc_{yx}\bigg)$$The sum is a series of non-negetive integer, so we have $\sum_{y}m_yc_{yx}=0$. $\square$
And it suffices to prove there exists an additive function on each Euclidean diagrams. As following

(To check the additivity, just check that the sum of number "come in" equals to 2 times of the number of point. )
Now, we can conclude the discription of Euclidean diagrams and Dynkin diagrams
Theroem. If a finite connected labelled graph $T$ admits a subaddtive function iff $T$ is either a Dynkin diagram or a Euclidean diagram. If furthermore, $T$ admits an additive function iff$T$ is a Euclidean diagram.
Proof. By the above lemmas.
Characterization using positive definity of Cartan's matrix
Using the characterization above, one can easily deriver the following characerization
Theroem. Given a finite connected labelled graph $T$, let $C$ be its Cartan matrix. $C$ is semidefinite iff $T$ is either a Dynkin diagram or a Euclidean diagram. Furthermore, $C$ is positive definite iff $T$ is a Dynkin diagram.
Proof. For an Euclidean diagram, let $n$ be an additive function, note that the condition of additivity implies for any fixed $x$, $\sum_{y\neq x}\frac{n_y c_{yx}}{n_x}=-2$, then$$\begin{array}{rl}\sum_{x,y\in V}a_xa_yc_{xy} & =2\sum_{x\in V}a_x^2+\sum_{x\neq y} a_xa_yc_{xy} \\ & =-\sum_{x\in V}\frac{a_x^2n_yc_{yx}}{n_x}+\sum_{x\neq y} a_xa_yc_{xy} \\& = -\frac{1}{2}\sum_{x\neq y}\big(\frac{a_x^2n_yc_{yx}}{n_x}+\frac{a_y^2n_xc_{xy}}{n_y}\big)+\sum_{x\neq y} a_xa_yc_{xy} \\ & =-\frac{1}{2}\sum_{x\neq y} n_xn_yc_{xy}\big(\frac{a_x}{n_x}-\frac{a_y}{n_y}\big)^2\geq 0\end{array}$$ Then, it is not difficult to see that the Cartan matrix is positive definite for Dynkin diagram, merely because Dynkin diagrams are exactly the graph strictly smaller than Euclidean diagrams. To prove when $T$ is neither a Dynkin diagram nor a Euclidean diagram. By the lemma above, there are some Euclidean diagram $T'$ strictly smaller than $T$. If $T$ contains all points of $T'$, then $(n_x)$ such that $\sum n_xn_yc_{xy}<0$, otherwise, pick a point, say $v$, in $T$ but not in $T'$, then $n'_x=\begin{cases}n_x & \textrm{$x$ in $T$} \\ \epsilon & x=v \\ 0 & \textrm{otherwise}\end{cases}$, then $$\begin{array}{rl}\sum n'_xn'_y c_{xy} & =\sum n_xn_yc_{xy}+2\epsilon^2+\underbrace{\bigg(\sum_{x\in V}c_{xv}\bigg)}_{<0}\epsilon \\ & \leq 0+ 2\epsilon^2+\underbrace{\bigg(\sum_{x\in V}c_{xv}\bigg)}_{<0}\epsilon\end{array}$$Take $\epsilon$ sufficient small, the above is strictly negetive. $\square$

Characterization of Dynkin diagrams的更多相关文章
- EF:split your EDMX file into multiple diagrams
我们可以把一个EDMX文件划分为多个类图: 1.在VS中打开EDMX设计器: 2.切换到“模型浏览器”属性设置窗口: 3.在diagrams上右键菜单中选择“添加新的关系图”: 4.在原来的关系图上可 ...
- How to generate UML Diagrams from Java code in Eclipse
UML diagrams compliment inline documentation ( javadoc ) and allow to better explore / understand a ...
- codeforces Diagrams & Tableaux1 (状压DP)
http://codeforces.com/gym/100405 D题 题在pdf里 codeforces.com/gym/100405/attachments/download/2331/20132 ...
- (转) Deep learning architecture diagrams
FastML Machine learning made easy RSS Home Contents Popular Links Backgrounds About Deep learning ar ...
- Class diagrams
So far we have seen stack diagrams, which show the state of a program, and object diagrams, which sh ...
- [RxJS] Marble diagrams in ASCII form
There are many operators available, and in order to understand them we need to have a simple way of ...
- 条形图(diagrams)
条形图(diagrams) 题目描述 小 虎刚上了幼儿园,老师让他做一个家庭作业:首先画3行格子,第一行有3个格子,第二行有2个格子,第三行有3个格子.每行的格子从左到右可以放棋子,但要 求除第一行外 ...
- Generating Sankey Diagrams from rCharts
A couple of weeks or so ago, I picked up an inlink from an OCLC blog post about Visualizing Network ...
- Reliability diagrams
Reliability diagrams (Hartmann et al. 2002) are simply graphs of the Observed frequency of an event ...
随机推荐
- Linux常用命令速查-用户管理
◆ 用户组 ◆ 查看当前用户所属的用户组 1 groups 查看所有用户组 123456789 [root@node2 ~]# cat /etc/group root:x:0:bin:x:1:daem ...
- spring集成shiro登陆流程(下)
首先声明入门看的张开涛大神的<跟我学shiro> 示例:https://github.com/zhangkaitao/shiro-example 博客:http://jinnianshil ...
- Git实际使用
初始化 git init — cd到目录,初始化仓库 git init name — 新建文件,并初始化仓库 .gitignore — 忽略文件(https://github.com/gi ...
- PHP学习笔记 02 之文件上传
我们了解了表单传值后,这些我就可以完成PHP的文件上传了.我们了解PHP文件上传前,先了解PHP文件上传的原理. 一.PHP上传文件原理 第一步:将本地的文件通过form表单上传到服务器的临时目录中, ...
- 在linux(centos)系统安装nginx教程
最近在切换服务器操作系统,简单记录一下 一.安装nginx需要如下环境 1.gcc 编译依赖gcc环境,如果没有gcc环境,需要安装gcc yum install gcc-c++ 2.PCRE ...
- springboot~jpa个性化数据操作接口
jap是个全能仓储 jap把很多数据库访问都封装了,并且提交了默认的一切数据方法签名的约定,大家按着约定走,可以不写SQL语句,而如果比较复杂的情况,也需要写SQL,这里我们介绍一下查询和修改的实例方 ...
- 服务器linux centos 7.4 搭建ftp服务器
此操作是在腾讯云服务器linux centos 7.4 完成搭建ftp服务器 vsftpd 的: 安装 vsftpd $ yum install vsftpd -y 启动 $ service vsft ...
- winform中使用委托进行窗体之间的传值
一.传统的方式 创建一个公共数据资源类,用于存储窗体2的TextBox的值: public class ComValue { public static string Txtvalue { get; ...
- [转]Python in Visual Studio Code
本文转自:https://code.visualstudio.com/docs/languages/python Working with Python in Visual Studio Code, ...
- [转] 以后再有人问你selenium是什么,你就把这篇文章给他
本文转自:https://blog.csdn.net/TestingGDR/article/details/81950593 写在最前面:目前自动化测试并不属于新鲜的事物,或者说自动化测试的各种方法论 ...