OpenCV使用FLANN进行特征点匹配
使用FLANN进行特征点匹配
目标
在本教程中我们将涉及以下内容:
- 使用 FlannBasedMatcher 接口以及函数 FLANN 实现快速高效匹配( 快速最近邻逼近搜索函数库(Fast Approximate Nearest Neighbor Search Library) )
理论
代码
这个教程的源代码如下所示。你还可以从 以下链接下载得到源代码
#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp" using namespace cv; void readme(); /** @function main */
int main( int argc, char** argv )
{
if( argc != 3 )
{ readme(); return -1; } Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE ); if( !img_1.data || !img_2.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; } //-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400; SurfFeatureDetector detector( minHessian ); std::vector<KeyPoint> keypoints_1, keypoints_2; detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 ); //-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor; Mat descriptors_1, descriptors_2; extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 ); //-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches ); double max_dist = 0; double min_dist = 100; //-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_1.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
} printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist ); //-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist )
//-- PS.- radiusMatch can also be used here.
std::vector< DMatch > good_matches; for( int i = 0; i < descriptors_1.rows; i++ )
{ if( matches[i].distance < 2*min_dist )
{ good_matches.push_back( matches[i]); }
} //-- Draw only "good" matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //-- Show detected matches
imshow( "Good Matches", img_matches ); for( int i = 0; i < good_matches.size(); i++ )
{ printf( "-- Good Match [%d] Keypoint 1: %d -- Keypoint 2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); } waitKey(0); return 0;
} /** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_FlannMatcher <img1> <img2>" << std::endl; }
解释
结果
这里是第一张图特征点检测结果:
此外我们通过控制台输出FLANN匹配关键点结果:
翻译者
Shuai Zheng, <kylezheng04@gmail.com>, http://www.cbsr.ia.ac.cn/users/szheng/
from: http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/features2d/feature_flann_matcher/feature_flann_matcher.html#feature-flann-matcher
OpenCV使用FLANN进行特征点匹配的更多相关文章
- OpenCV 使用FLANN进行特征点匹配
#include <stdio.h> #include <iostream> #include "opencv2/core/core.hpp" #inclu ...
- 《opencv学习》 之 特征检测与匹配
这几天学习SURF特征检测,直接看的视频和书本有点吃不消,现在是基本看懂了,如果写博客记录没有必要,因为网上都差不多,笔记都在书上了,以下是个人认为比较浅显易懂的文章,当然海有很多好文章我没看到. 看 ...
- sift、surf、orb 特征提取及最优特征点匹配
目录 sift sift特征简介 sift特征提取步骤 surf surf特征简介 surf特征提取步骤 orb orb特征简介 orb特征提取算法 代码实现 特征提取 特征匹配 附录 sift si ...
- Opencv中使用Surf特征实现图像配准及对透视变换矩阵H的平移修正
图像配准需要将一张测试图片按照第二张基准图片的尺寸.角度等形态信息进行透视(仿射)变换匹配,本例通过Surf特征的定位和匹配实现图像配准. 配准流程: 1. 提取两幅图像的Surf特征 2. 对Sur ...
- Opencv Sift和Surf特征实现图像无缝拼接生成全景图像
Sift和Surf算法实现两幅图像拼接的过程是一样的,主要分为4大部分: 1. 特征点提取和描述 2. 特征点配对,找到两幅图像中匹配点的位置 3. 通过配对点,生成变换矩阵,并对图像1应用变换矩阵生 ...
- 第二篇 特征点匹配以及openvslam中的相关实现详解
配置文件 在进入正题之前先做一些铺垫,在openvslam中,配置文件是必须要正确的以.yaml格式提供,通常需要指明使用的相机模型,ORB特征检测参数,跟踪参数等. #==============# ...
- 【macOS】 在OpenCV下训练Haar特征分类器
本教程基于以下环境 macOS 10.12.6,OpenCV 3.3.0,python 3.6.由于网上基于masOS系统的教程太少,想出一篇相关教程造福大家-本文旨在学习如何在opencv中基于ha ...
- OpenCV教程(47) sift特征和surf特征
在前面三篇教程中的几种角检测方法,比如harris角检测,都是旋转无关的,即使我们转动图像,依然能检测出角的位置,但是图像缩放后,harris角检测可能会失效,比如下面的图像,图像放大之前可 ...
- opencv surf特征点匹配拼接源码
http://blog.csdn.net/huixingshao/article/details/42672073 /** * @file SURF_Homography * @brief SURF ...
随机推荐
- Web前端开发最佳实践(5):正确闭合HTML标签,停止使用不标准的标签和属性
正确闭合HTML标签 HTML元素的内容模型定义了元素的结构,表明元素可以包含哪些内容以及元素可以有哪些属性.元素可以包含的内容包括其他元素和字符,但是也有一些元素是空元素,即不能包含任何内容,这些元 ...
- 【原创】Scrapyd 的 .net 客户端
最近项目需要部署Scrapy爬虫,采用最简单的Scrapyd服务进行部署,基于.net core 进行了客户端的封装. 1)Scrapyd API文档:http://scrapyd.readthedo ...
- JS~jwPlayer为js预留的回调方法大总结
对于一个成功的产品,它是对外封闭的,但又是对外开放的,这句话并不矛盾,让我来说一下,说它对外封闭是因为它本身的代码不允许你去修改,而说它开放,是因为它为我们定义了很多API,或者叫回调方法,对于jwp ...
- js对小数的操作
1.丢弃小数部分,保留整数部分 js:parseInt(7/2) 2.向上取整,有小数就整数部分加1 js: Math.ceil(7/2) 3,四舍五入. js: Math.round(7/2) 4, ...
- LR字符串处理
Action() { strchr和strrchr: //strchr:查找指定字符在一个字符串中第一次出现的位置,然后返回指向该位置的指针. //char *strchr(const char *s ...
- HashMap在Java1.7与1.8中的区别
基于JDK1.7.0_80与JDK1.8.0_66做的分析 JDK1.7中 使用一个Entry数组来存储数据,用key的hashcode取模来决定key会被放到数组里的位置,如果hashcode相同, ...
- IndiaHacks 2016 - Online Edition (Div. 1 + Div. 2) E - Bear and Forgotten Tree 2 链表
E - Bear and Forgotten Tree 2 思路:先不考虑1这个点,求有多少个连通块,每个连通块里有多少个点能和1连,这样就能确定1的度数的上下界. 求连通块用链表维护. #inclu ...
- javascript 原生得到document.Element的方法
今天这里写这个博客的主要目的是记录一下javascript原生的选择dom的集中方法. 1.document.getElementById.这个方法接收1个参数,就是DOM元素的id(区分大小写),这 ...
- FastReport.Net使用:[2]添加MSSQL数据源一
如何使用MSSQL表作为数据源 1.点击FastReport设计器中Data->Add Data Source菜单项,打开数据源添加向导. 2.添加新的数据连接. 点击 New connecti ...
- codevs 1058 合唱队形 2004年NOIP全国联赛提高组
1058 合唱队形 2004年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description N位同学站成一排,音 ...