[luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)
题目描述
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.
输入输出格式
输入格式:
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
输出格式:
输出最小费用
输入输出样例
输入样例#1:
5 4
3
4
2
1
4
输出样例#1:
1
简单的斜率优化基础题 式子有点长(懒得打)
code:
//By Menteur_Hxy
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <map>
#include <vector>
#include <queue>
#include <set>
#include <ctime>
#define M(a,b) memset(a,(b),sizeof(a))
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
#define LL long long
using namespace std;
inline LL rd() {
LL x=0,fla=1; char c=' ';
while(c>'9'|| c<'0') {if(c=='-') fla=-fla; c=getchar();}
while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
return x*fla;
}
inline void out(LL x){
int a[25],wei=0;
if(x<0) putchar('-'),x=-x;
for(;x;x/=10) a[++wei]=x%10;
if(wei==0){ puts("0"); return;}
for(int j=wei;j>=1;--j) putchar('0'+a[j]);
putchar('\n');
}
const int N=50010;
const int INF=0x3f3f3f3f;
int n,L;
LL da[N],f[N],s[N],q[N];
double slope(LL k,LL j) {
return (double) (f[j]-f[k]+(da[j]+L)*(da[j]+L)-(da[k]+L)*(da[k]+L))/(2.0*(da[j]-da[k]));
}
int main() {
n=rd();L=rd();L++;
F(i,1,n) da[i]=rd(),da[i]+=da[i-1]+1;
// F(i,1,n) cout<<da[i]<<" ";cout<<endl;
int h=0,t=0;
F(i,1,n) {
while(h<t && slope(q[h],q[h+1])<=da[i]) h++;
int v=q[h];
f[i]=f[v]+(da[i]-da[v]-L)*(da[i]-da[v]-L);
while(h<t && slope(q[t],i)<slope(q[t-1],q[t])) t--;
q[++t]=i;
}
// F(i,1,n) cout<<f[i]<<" ";cout<<endl;
out(f[n]);
return 0;
}
[luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)的更多相关文章
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- P3195 [HNOI2008]玩具装箱TOY 斜率优化dp
传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...
- 【BZOJ1010】【HNOI2008】玩具装箱toy (斜率优化DP) 解题报告
题目: 题目在这里 思路与做法: 这题不难想. 首先我们先推出一个普通的dp方程: \(f_i = min \{ f_j+(i-j-1+sum_i-sum_j-L)^2\}\) 然后就推一推式子了: ...
- 『玩具装箱TOY 斜率优化DP』
玩具装箱TOY(HNOI2008) Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊 ...
- [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp
玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...
随机推荐
- Project Euler 13 Large sum
题意:计算出以下一百个50位数的和的前十位数字. /************************************************************************* ...
- Ural 1996 Cipher Message 3 (生成函数+FFT)
题面传送门 题目大意:给你两个$01$串$a$和$b$,每$8$个字符为$1$组,每组的最后一个字符可以在$01$之间转换,求$b$成为$a$的一个子串所需的最少转换次数,以及此时是从哪开始匹配的. ...
- C#通过SendMessage发送消息,改变其他程序的下拉框控件(ComboBox)的值
IntPtr cbh= new IntPtr(handle); //ComboBox的句柄 SendMessage(cbh, 0x014D, new IntPtr(-1), "需要选中的下拉 ...
- JavaScript(DOM编程三)
节点的移动,insertBefore <body> <p>你喜欢哪个城市?</p> <ul id="city"><li id= ...
- linux下添加自定义脚本到开机自启动的方法
原文链接:http://www.jb51.net/LINUXjishu/183462.html 我的机器有个coreseek服务,但是没加到开启启动中去,导致机房一旦重启了机器,我的服务便不能使用了. ...
- Android自己定义对话框实现QQ退出界面
效果 首先看下qq的效果图,点击菜单button后点退出就会出现如图的对话框. 从上图能够看出,该对话框有一个圆角,以及标题,提示信息,两个button,button颜色是白色,button点击后背景 ...
- Cocos2dx之使用UI库结合cocostudio
使用cocostudio的UI编辑器编辑好UI界面,导出UI文件,直接在cocos2dx中使用.通过tag或者name来获取到UI控件 1.编辑ui界面,直接用模板然后拖几个控件过去 2.cocos2 ...
- UFLDL教程笔记及练习答案五(自编码线性解码器与处理大型图像**卷积与池化)
自己主动编码线性解码器 自己主动编码线性解码器主要是考虑到稀疏自己主动编码器最后一层输出假设用sigmoid函数.因为稀疏自己主动编码器学习是的输出等于输入.simoid函数的值域在[0,1]之间,这 ...
- 创建逻辑dg
逻辑备用DG 今天是2014-04-29,近期一直忙的事情,也没来的急写点东西.今天继续整理dg的相关内容,要说的是逻辑dg的创建过程和注意事项. 什么是逻辑dg呢?物理dg类似于主库的完整副本. ...
- iOS开发中权限再度梳理
前言 上篇文章iOS开发中的这些权限,你搞懂了吗?介绍了一些常用权限的获取和请求方法,知道这些方法的使用基本上可以搞定大部分应用的权限访问的需求.但是,这些方法并不全面,不能涵盖住所有权限访问的方法. ...