弗洛伊德(Floyd)算法是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。

基本思想

通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。

假设图G中顶点个数为N,则需要对矩阵S进行N次更新。初始时,矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。 接下来开始,对矩阵S进行N次更新。第1次更新时,如果"a[i][j]的距离" > "a[i][0]+a[0][j]"(a[i][0]+a[0][j]表示"i与j之间经过第1个顶点的距离"),则更新a[i][j]为"a[i][0]+a[0][j]"。 同理,第k次更新时,如果"a[i][j]的距离" > "a[i][k]+a[k][j]",则更新a[i][j]为"a[i][k]+a[k][j]"。更新N次之后,操作完成!

matlab代码函数如下:

function [dist,mypath]=myfloyd(a,sb,db);
% 输入:a—邻接矩阵(aij)是指i 到j 之间的距离,可以是有向的
% sb—起点的标号;db—终点的标号
% 输出:dist—最短路的距离;% mypath—最短路的路径
n=size(a,1); path=zeros(n);
for i=1:n
for j=1:n
if a(i,j)~=inf
path(i,j)=j; %j 是i 的后续点
end
end
end
for k=1:n
for i=1:n
for j=1:n
if a(i,j)>a(i,k)+a(k,j)
a(i,j)=a(i,k)+a(k,j);
path(i,j)=path(i,k);
end
end
end
end
dist=a(sb,db);
mypath=sb; t=sb;
while t~=db
temp=path(t,db);
mypath=[mypath,temp];
t=temp;
end
return

  

多源最短路Floyd 算法————matlab实现的更多相关文章

  1. 多源最短路——Floyd算法

    Floyd算法 问题的提出:已知一个有向网(或者无向网),对每一对定点vi!=vj,要求求出vi与vj之间的最短路径和最短路径的长度. 解决该问题有以下两种方法: (1)轮流以每一个定点为源点,重复执 ...

  2. 多源最短路(floyd算法)

    Floyd算法: 如何简单方便的求出图中任意两点的最短路径 Floyd-Warshall算法(O(n)比较适用于边较多的稠密图(Dense Graph)) Floyd算法用来找出每对顶点之间的最短距离 ...

  3. 单源最短路Dijkstra算法——matlab实现

    迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想 通过Dijk ...

  4. 模板C++ 03图论算法 2最短路之全源最短路(Floyd)

    3.2最短路之全源最短路(Floyd) 这个算法用于求所有点对的最短距离.比调用n次SPFA的优点在于代码简单,时间复杂度为O(n^3).[无法计算含有负环的图] 依次扫描每一点(k),并以该点作为中 ...

  5. 【ACM程序设计】求短路 Floyd算法

    最短路 floyd算法 floyd是一个基于贪心思维和动态规划思维的计算所有点到所有点的最短距离的算法. P57-图-8.Floyd算法_哔哩哔哩_bilibili 对于每个顶点v,和任一顶点对(i, ...

  6. 最短路算法模板合集(Dijkstar,Dijkstar(优先队列优化), 多源最短路Floyd)

    再开始前我们先普及一下简单的图论知识 图的保存: 1.邻接矩阵. G[maxn][maxn]; 2.邻接表 邻接表我们有两种方式 (1)vector< Node > G[maxn]; 这个 ...

  7. 最短路 - floyd算法

    floyd算法是多源最短路算法 也就是说,floyd可以一次跑出所以点两两之间的最短路 floyd类似动态规划 如下图: 用橙色表示边权,蓝色表示最短路 求最短路的流程是这样的: 先把点1到其他点的最 ...

  8. HDU 2066 最短路floyd算法+优化

    http://acm.hdu.edu.cn/showproblem.php?pid=206 题意 从任意一个邻居家出发 到达任意一个终点的 最小距离 解析 求多源最短路 我想到的是Floyd算法 但是 ...

  9. 最短路--floyd算法模板

    floyd算法是求所有点之间的最短路的,复杂度O(n3)代码简单是最大特色 #include<stdio.h> #include<string.h> ; const int I ...

随机推荐

  1. Python中的日期和时间

    感觉C语言作为一门编程的入门语言还是很好的,相比较之下,Python为代表的一些语言,适合很多非计算机专业的编程入门学习. Python 日期和时间 Python 程序能用很多方式处理日期和时间,转换 ...

  2. 对JDBC的优化,BeanUtils和DBUtils

    为了进一步简化jdbc的使用,就是用组件进一步的及优化 BeanUtils工具包,代替java本身蹩脚的javaBean,使对象的封装更加的简单易行 DBUtils工具包,是jdbc的操作更加的简单 ...

  3. Android getAttributeIntValue()详解-霞辉

    经常使用getAttributeIntValue()方法,但是大多使用的形式是attrs.getAttributeFloatValue(null, "xxx", 0);只是在中间传 ...

  4. Gson和Json

    一下内容为复制别人的: Gson 是 Google 提供的用来在 Java 对象和 JSON 数据之间进行映射的 Java 类库.可以将一个 JSON 字符串转成一个 Java 对象,或者反过来. j ...

  5. javascript . 03 函数定义、函数参数(形参、实参)、函数的返回值、冒泡函数、函数的加载、局部变量与全局变量、隐式全局变量、JS预解析、是否是质数、斐波那契数列

    1.1 知识点 函数:就是可以重复执行的代码块 2.  组成:参数,功能,返回值 为什么要用函数,因为一部分代码使用次数会很多,所以封装起来, 需要的时候调用 函数不调用,自己不会执行 同名函数会覆盖 ...

  6. 走入PHP-declare、ticks、encoding、include

    declare 结构用来设定一段代码的执行指令.declare 的语法和其它流程控制结构相似(该代码为语法格式,不是代码案例,无需敲打该代码): declare (directive) stateme ...

  7. 【iOS】7.4 定位服务->3.1 地图框架MapKit 功能1:地图展示

    > 本文并非最终版本,如果想要关注更新或更正的内容请关注文集,联系方式详见文末,如有疏忽和遗漏,欢迎指正. --- > 本文相关目录: ================== 所属文集:[[ ...

  8. JAVA优化建议

    前言 代码优化,一个很重要的课题.可能有些人觉得没用,一些细小的地方有什么好修改的,改与不改对于代码的运行效率有什么影响呢?这个问题我是这么考虑的,就像大海里面的鲸鱼一样,它吃一条小虾米有用吗?没用, ...

  9. 如何在IDEA中调试 Jar文件

    原创文章,转载请注明出处:http://www.cnblogs.com/acm-bingzi/p/6668333.html   问题: 一般情况下,可以打成Jar包的项目,它的源码运行Applicat ...

  10. 使用assets目录来实现插件机制

    /** * 管理接口. * @author jevan * @version 1.0 at 2013-12-6 * */ public interface IManage { /** * 注册平台接口 ...