https://www.luogu.org/problemnew/show/P4782

链接

https://www.luogu.org/problemnew/show/P4782

思路

选a就必须选b

好像是要建反边,tarjan,tarjan的染色省去拓扑排序

拓扑排序我也感觉跟贪心似的

代码

#include <bits/stdc++.h>
using namespace std;
const int N=2e6+7;
int read() {
int x=0,f=1;char s=getchar();
for(;s>'9'||s<'0';s=getchar()) if(s=='-') f=-1;
for(;s>='0'&&s<='9';s=getchar()) x=x*10+s-'0';
return x*f;
}
int n,m;
int dfn[N],low[N],stak[N],top,vis[N],belong[N],cnt;
struct node {
int v,nxt,q;
}e[N<<1];
int head[N<<1],tot;
void add(int u,int v) {
e[++tot].v=v;
e[tot].nxt=head[u];
head[u]=tot;
}
void tarjan(int u) {
dfn[u]=low[u]=++cnt;
stak[++top]=u;
vis[u]=1;
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(!dfn[v]) {
tarjan(v);
low[u]=min(low[u],low[v]);
} else if(vis[v]) {
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u]) {
belong[0]++;
while(stak[top]!=u) {
vis[stak[top]]=0;
belong[stak[top]]=belong[0];
top--;
}
vis[u]=0;
belong[u]=belong[0];
top--;
}
}
int main() {
n=read(),m=read();
for(int k=1;k<=m;++k) {
int i=read(),x=read(),j=read(),y=read();
// add(n*(x^1)+i,n*y+j);
// add(n*(y^1)+j,n*x+i);
add(i + n * x,(j + n * (y ^ 1)));
add(j + n * y,(i + n * (x ^ 1)));
}
for(int i=1;i<=n*2;++i)
if(!dfn[i]) tarjan(i);
for(int i=1;i<=n;++i) {
if(belong[i]==belong[i+n]) {
puts("IMPOSSIBLE");
return 0;
}
}
puts("POSSIBLE");
for(int i=1;i<=n;++i) printf("%d ",(belong[i]<belong[i+n]));
return 0;
}

P4782 【模板】2-SAT 问题的更多相关文章

  1. [洛谷P4782] [模板] 2-SAT 问题

    NOIp后第一篇题解. NOIp我考的很凉啊...... 题目传送门 之前讲过怎么判断2-SAT是否存在解. 至于如何构造一组解: 我们想到对tarjan缩点后的图进行拓扑排序. 那么对于代表0状态的 ...

  2. P4782 【模板】2-SAT 问题 && 2-SAT问题

    2-SAT到图论 \(k-SAT\) 是 k-适应性问题(Satisfiability)的简称. \(k-SAT\) 问题(除 \(k = 2\))已被证明为是 \(NP\) 完全问题, 而对于 \( ...

  3. 洛谷P4782 【模板】2-SAT问题 [2-SAT]

    题目传送门 [模板]2-SAT问题 题目背景 2-SAT 问题 模板 题目描述 有n个布尔变量 $x_1/~x_n$​ ,另有$m$个需要满足的条件,每个条件的形式都是“ $x_i$ 为$true/f ...

  4. 2 - sat 模板(自用)

    2-sat一个变量两种状态符合条件的状态建边找强连通,两两成立1 - n 为第一状态(n + 1) - (n + n) 为第二状态 例题模板 链接一  POJ 3207 Ikki's Story IV ...

  5. Luogu P4782 【模板】2-SAT 问题(2-SAT)

    P4782 [模板]2-SAT 问题 题意 题目背景 \(2-SAT\)问题模板 题目描述 有\(n\)个布尔变量\(x_1\sim x_n\),另有\(m\)个需要满足的条件,每个条件的形式都是&q ...

  6. [模板][P4782]2-SAT

    Description: 有n个布尔变量\(x_1\)~\(x_n\),另有m个需要满足的条件,每个条件的形式都是"\(x_i\)为true/false或\(x_j\)为true/false ...

  7. 【刷题】洛谷 P4782 【模板】2-SAT 问题

    题目背景 2-SAT 问题 模板 题目描述 有n个布尔变量 \(x_1\)​~\(x_n\)​,另有m个需要满足的条件,每个条件的形式都是"\(x_i\)​为true/false或\(x_j ...

  8. 2-SAT问题介绍求解 + 模板题P4782

    (点击此处查看原题) 什么是2-SAT问题 sat 即 Satisfiability,意思为可满足,那么2-SAT表示一些布尔变量只能取true或者false,而某两个变量之间的值存在一定的关系(如: ...

  9. [洛谷P4782]【模板】2-SAT 问题

    题目大意:有$n$个布尔变量 $x_1 \sim x_n$,另有$m$个需要满足的条件,每个条件的形式都是"$x_i$ 为$true/false$或$x_j$为$true/false$&qu ...

随机推荐

  1. c# 确定dynamic类型的数据对象是否存在某个属性

    public static bool IsPropertyExist(dynamic data, string propertyname)   {     if (data is ExpandoObj ...

  2. mysql字符集问题,及排序规则

    字符集问题: 基本概念 • 字符(Character)是指人类语言中最小的表义符号.例如’A'.’B'等:• 给定一系列字符,对每个字符赋予一个数值,用数值来代表对应的字符,这一数值就是字符的编码(E ...

  3. SQLConnect

    SQLConnect 函数定义: 这个函数就是与数据库建立连接 SQLRETURN SQLConnect( SQLHDBC     ConnectionHandle, SQLCHAR *     Se ...

  4. hdu2609最小表示法

    #include <iostream> #include <algorithm> #include <string.h> #include <cstdio&g ...

  5. Qt—MVC架构

    [1]代理应用示例源码 用代码说事,比较靠谱. 代码目录:三个自定义类,重实现QStyledItemDelegate类.main函数应用示例. (1)ComboDelegate.h #ifndef C ...

  6. Hue中hive(hive cli)查询结果中显示列名,不带表名

    hive cli中显示列名 进入hive cli后 set hive.cli.print.header=true; 之后出现列名,但是带了表名前缀,由于网上没找到资料,于是到官网肉眼扫描所有参数,总算 ...

  7. c# ListBox控件

    ListBox控件可以一次呈现多个项,并且语序对控件中的选项进行选择操作,ListBox类公开Items属性,它是一个集合,类型为ListBox.ObjectCollection,是ListBox的一 ...

  8. Installing Android Studio

    To set up Android Studio on Windows: Launch the .exe file you just downloaded. Follow the setup wiza ...

  9. ajax处理文件下载

    ajax中处理文件下载,可能大数会遇到我和一样的问题,什么问题呢?就是下载程序执行了,但是浏览器没有任何下载操作,这是为什么呢? 那是因为response原因,一般请求浏览器是会处理服务器输出的res ...

  10. django的url配置

    在一个请求到达的时候,最先达到的就是视图层,然后根据url映射到视图函数.这一部分我们来说明url的配置. 概述 为了给一个应用设计URL,你需要创建一个Python 模块,通常称为URLconf(U ...