题目链接:

[十二省联考2019]异或粽子

求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间。

为了快速得到一个区间的异或和,将原序列做前缀异或和。

对于每个点作为右端点时,我们维护出与他异或起来最大的左端点并将这组信息用结构体存起来插入堆中。

那么最大值就是堆顶那组(假设右端点为$r$),但考虑到次大值可能出自同一个右端点,所以在弹出堆顶后还需要将以$r$为右端点的次大值插入堆中。

那么如何求出以$r$为右端点的最大值和次大值?

我们对序列每个数为一个版本建可持久化$trie$树,那么最大值就是对于$[1,r]$版本(第一个版本插入的数为$a[0]$)求与一个数异或的最大值。

至于次大值,可以记录求最大值时的版本区间(设为$[l,r]$)及最大值所在序列(或版本)的位置(设为$mid$),在弹出最大值那组信息的同时插入$[l,mid-1]$和$[mid+1,r]$两个区间,分别对这两个区间求最大值即可。

因为需要求具体位置,所以在插入时需要在当前版本插入的一条链的叶子节点记录插入数在原数组的下标,当查询$[l,r]$时,返回$r$版本对应叶子节点记录的信息即可。因为每个版本只插入一个数,所以每个叶子结点记录的就是对应权值的最后一个位置,也就可以保证$r$版本对应叶子节点记录的信息一定在$[l,r]$之间。

那么要求出前$k$大,只需要每次取出堆顶然后将堆顶查询区间分为两部分再插入堆中,重复$k$次即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int cnt;
int root[500010];
int n,k;
ll ans;
struct miku
{
int ls,rs,size,id;
}tr[20000010];
ll a[500010],x;
void updata(int &rt,int pre,int dep,ll val,int num)
{
rt=++cnt;
tr[rt].size=tr[pre].size+1;
tr[rt].ls=tr[pre].ls;
tr[rt].rs=tr[pre].rs;
if(dep==0)
{
tr[rt].id=num;
return ;
}
if(val&(1<<(dep-1)))
{
updata(tr[rt].rs,tr[pre].rs,dep-1,val,num);
}
else
{
updata(tr[rt].ls,tr[pre].ls,dep-1,val,num);
}
}
int query(int x,int y,int dep,ll val)
{
if(dep==0)
{
return tr[y].id;
}
if(val&(1<<(dep-1)))
{
if(tr[tr[y].ls].size-tr[tr[x].ls].size>0)
{
return query(tr[x].ls,tr[y].ls,dep-1,val);
}
else
{
return query(tr[x].rs,tr[y].rs,dep-1,val);
}
}
else
{
if(tr[tr[y].rs].size-tr[tr[x].rs].size>0)
{
return query(tr[x].rs,tr[y].rs,dep-1,val);
}
else
{
return query(tr[x].ls,tr[y].ls,dep-1,val);
}
}
}
struct lty
{
int l,r,mid,rt;
ll val;
lty(){}
lty(int L,int R,int RT)
{
l=L,r=R,rt=RT;
mid=query(root[l-1],root[r],32,a[rt]);
val=a[rt]^a[mid-1];
}
bool operator <(lty a)const
{
return val<a.val;
}
};
priority_queue<lty>q;
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
{
scanf("%lld",&x);
a[i]=a[i-1]^x;
}
for(int i=1;i<=n;i++)
{
updata(root[i],root[i-1],32,a[i-1],i);
}
for(int i=1;i<=n;i++)
{
q.push(lty(1,i,i));
}
while(k--&&!q.empty())
{
lty now=q.top();
q.pop();
ans+=now.val;
if(now.mid>now.l)
{
q.push(lty(now.l,now.mid-1,now.rt));
}
if(now.mid<now.r)
{
q.push(lty(now.mid+1,now.r,now.rt));
}
}
printf("%lld",ans);
}

还有一种解决方法是记录以$r$为右端点的区间已经取了前$k$大,每次取出堆顶将堆顶记录的$k$加一,查询第$k+1$大的异或区间再插入堆中。这样每组只需要存三个信息相对于上一种方法常数较小。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int cnt;
int root[500010];
int n,k;
ll ans;
struct miku
{
int ls,rs,size;
}tr[20000010];
ll a[500010],x;
void updata(int &rt,int pre,int dep,ll val)
{
rt=++cnt;
tr[rt].size=tr[pre].size+1;
tr[rt].ls=tr[pre].ls;
tr[rt].rs=tr[pre].rs;
if(dep==0)
{
return ;
}
if(val&(1<<(dep-1)))
{
updata(tr[rt].rs,tr[pre].rs,dep-1,val);
}
else
{
updata(tr[rt].ls,tr[pre].ls,dep-1,val);
}
}
ll query(int rt,int dep,ll val,int k)
{
if(dep==0)
{
return 0ll;
}
if(val&(1<<(dep-1)))
{
int res=tr[tr[rt].ls].size;
if(res>=k)
{
return query(tr[rt].ls,dep-1,val,k)+(1ll<<(dep-1));
}
else
{
return query(tr[rt].rs,dep-1,val,k-res);
}
}
else
{
int res=tr[tr[rt].rs].size;
if(res>=k)
{
return query(tr[rt].rs,dep-1,val,k)+(1ll<<(dep-1));
}
else
{
return query(tr[rt].ls,dep-1,val,k-res);
}
}
}
struct lty
{
int k,rt;
ll val;
lty(){}
lty(int K,int RT)
{
k=K,rt=RT;
val=query(root[rt],32,a[rt],k);
}
bool operator <(lty a)const
{
return val<a.val;
}
};
priority_queue<lty>q;
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
{
scanf("%lld",&x);
a[i]=a[i-1]^x;
}
for(int i=1;i<=n;i++)
{
updata(root[i],root[i-1],32,a[i-1]);
}
for(int i=1;i<=n;i++)
{
q.push(lty(1,i));
}
while(k--&&!q.empty())
{
lty now=q.top();
q.pop();
ans+=now.val;
q.push(lty(now.k+1,now.rt));
}
printf("%lld",ans);
}

[十二省联考2019]异或粽子——可持久化trie树+堆的更多相关文章

  1. 洛谷.5283.[十二省联考2019]异或粽子(可持久化Trie 堆)

    LOJ 洛谷 考场上都拍上了,8:50才发现我读错了题=-= 两天都读错题...醉惹... \(Solution1\) 先求一遍前缀异或和. 假设左端点是\(i\),那么我们要在\([i,n]\)中找 ...

  2. [十二省联考2019] 异或粽子 - 可持久化Trie,堆

    求 \(n\) 元数列的 \(k\) 个不同的子区间使得各个子区间异或和之和最大. Solution (差点又看错题了) 做个前缀和,于是转化成求序列异或和最大的 \(k\) 个数对 建一棵可持久化 ...

  3. P5283 [十二省联考2019]异或粽子 可持久化01Trie+线段树

    $ \color{#0066ff}{ 题目描述 }$ 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 \(n\) 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 ...

  4. 【BZOJ5495】[十二省联考2019]异或粽子(主席树,贪心)

    [BZOJ5495][十二省联考2019]异或粽子(主席树,贪心) 题面 BZOJ 洛谷 题解 这不是送分题吗... 转异或前缀和,构建可持久化\(Trie\). 然后拿一个堆维护每次的最大值,每次如 ...

  5. [十二省联考2019]异或粽子 01trie

    [十二省联考2019]异或粽子 01trie 链接 luogu 思路 首先求前k大的(xo[i]^xo[j])(i<j). 考场上只想到01trie,不怎么会写可持久,就写了n个01trie,和 ...

  6. 【简】题解 P5283 [十二省联考2019]异或粽子

    传送门:P5283 [十二省联考2019]异或粽子 题目大意: 给一个长度为n的数列,找到异或和为前k大的区间,并求出这些区间的异或和的代数和. QWQ: 考试时想到了前缀异或 想到了对每个数按二进制 ...

  7. 【洛谷5283】[十二省联考2019] 异或粽子(可持久化Trie树+堆)

    点此看题面 大致题意: 求前\(k\)大的区间异或和之和. 可持久化\(Trie\)树 之前做过一些可持久化\(Trie\)树题,结果说到底还是主席树. 终于,碰到一道真·可持久化\(Trie\)树的 ...

  8. Luogu P5283 / LOJ3048 【[十二省联考2019]异或粽子】

    联考Day1T1...一个考场上蠢了只想到\(O(n^2)\)复杂度的数据结构题 题目大意: 求前\(k\)大区间异或和的和 题目思路: 真的就是个sb数据结构题,可持久化01Trie能过(开O2). ...

  9. [十二省联考2019]异或粽子(堆+可持久化Trie)

    前置芝士:可持久化Trie & 堆 类似于超级钢琴,我们用堆维护一个四元组\((st, l, r, pos)\)表示以\(st\)为起点,终点在\([l, r]\)内,里面的最大值的位置为\( ...

随机推荐

  1. 利用MingW检验程序运行内存

    今天zhx老师在讲课的时候提到了一种检验程序内存的方法 一般计算内存的方法就是手算,手动计算代码中每个变量所占的内存然后加起来 具体可以参考这篇文章 zhx老师讲的方法可以实现全自动化计算内存 具体怎 ...

  2. 【20190304】JavaScript-知识点总结:Set,异或

    ES6新特性:Set ES6提供了新的数据结构Set,Set对象不是数组, 可以用来保存对象或者基本类型, 所有保存的值都是唯一的, chrome浏览器>38和FF>13,以及nodeJS ...

  3. MongoDB的常用命令和增查改删

    数据库操作 Mongodb MySQL 查询库 show databases | show dbs show databases 选中库 use databaseName use databaseNa ...

  4. LeetCode算法题-Search in a Binary Search Tree(Java实现)

    这是悦乐书的第295次更新,第314篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第163题(顺位题号是700).给定一个二叉搜索树(BST)的和正整数val. 你需要在 ...

  5. 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化

    1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...

  6. day9-基础函数的学习(四)

    这几天一直赶着写写作业,博客的书写又落下了,要加油鸭,开写 今日份目录 1.内置函数 2.递归函数 开始今日份总结 1.内置函数 内置函数就是python内部包含的函数,总计有68种,不过有些事真的天 ...

  7. fastjson List转JSONArray以及JSONArray转List

    1.fastjson  List转JSONArrayList<T> list = new ArrayList<T>();JSONArray array= JSONArray.p ...

  8. 18 python 初学(time、random 模块)

    # _author: lily # _date: 2019/1/13 import time import datetime print(help(time)) # print(time.time() ...

  9. go笔记-值传递、引用传递

    eg: func sliceModify(slice []int) { // slice[0] = 88 slice = append(slice, ) } func main() { slice : ...

  10. 如何展开Linux Memory Management学习?

    Linux的进程和内存是两座大山,没有翻过这两座大山对于内核的理解始终是不完整的. 关于Linux内存管理,在开始之前做些准备工作. 首先bing到了Quora的<How can one rea ...