ST表解决RMQ问题
RMQ问题:
RMQ(Range Minimum/Maximum Query),区间最值查询。对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值。
RMQ问题可以用线段树和ST表解决。
线段树:查询复杂度O(log n) 可以修改数列中的值
ST表: 查询复杂度 O(1) 无法修改数列中的值,是在线算法
其实ST表就是个动态规划
核心思想:倍增
对于dp[i][j] ,其含义为以i为起点,长度为2^j这个区间的最大值
转移方程就是把这个区间分成两个小区间的最大值。
https://www.luogu.com.cn/problem/P3865
https://www.cnblogs.com/zwfymqz/p/8581995.html
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + 5;
int n,m;
int dp[maxn][21];
int main() {
scanf("%d%d",&n,&m);
int num;
for(int i=1;i<=n;i++) //初始化,区间长度为1,最大值就是本身
{
scanf("%d",&num);
dp[i][0]=num;
}
for(int j=1;(1<<j)<=n;j++) //2^j 要大于等于区间长度
for(int i=1;i+(1<<j)-1<=n;i++) //处理i到i+(1<<j)-1这个区间
{
dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]); //将当前区间[i,i+2^j]拆分成[i,i+2^(j-1)] [i+2^(j-1),i+2^(j-1)+2^(j-1)].
} //其实就是再中间切割一下 后边区间可以简写成[i+2^(j-1),i+2^j]
int k;
int l,r;
while(m--)
{
scanf("%d%d",&l,&r);
k=log2(r-l+1);
printf("%d\n",max(dp[l][k],dp[r-(1<<k)+1][k]));
}
return 0;
}
ST表解决RMQ问题的更多相关文章
- 算法学习 - ST表 - 稀疏表 - 解决RMQ问题
2017-08-26 21:44:45 writer:pprp RMQ问题就是区间最大最小值查询问题: 这个SparseTable算法构造一个表,F[i][j] 表示 区间[i, i + 2 ^ j ...
- ST表 求 RMQ(区间最值)
RMQ即Range Minimum/Maximun Query,中文意思:查询一个区间的最小值/最大值 比如有这样一个数组:A{3 2 4 5 6 8 1 2 9 7},然后问你若干问题: 数组A下标 ...
- POJ 3264 Balanced Lineup 【ST表 静态RMQ】
传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total S ...
- ST表(离线RMQ)
离线RAQ时,预处理为O(n*lgn),查询为O(1)的算法,比较有意思的一种算法 放个模板在这可以随时看 //ST表(离线) //预处理 O(n*lgn) , 查询 O(1) #include &l ...
- 基于ST表的RMQ
RMQ算法,是一个快速求区间最值的离线算法,预处理时间复杂度O(n*log(n))查询O(1),所以是一个很快速的算法,当然这个问题用线段树同样能够解决. 问题:给出n个数ai,让你快速查询某个区间的 ...
- ST函数(ST表)RMQ O(1)查询 离线
ST算法是基于倍增的动态规划算法. #include<iostream> #include<cstdio> #include<cstdlib> #include&l ...
- st表、RMQ和LCA
int lca(int x,int y) { if(de[x]<de[y]) swap(x,y); int d=de[x]-de[y]; for(int i=log2(d);i>=0;i- ...
- 用ST解决RMQ问题
用ST算法解决RMQ(区间最值问题) 在解决CF上的6E Exposition时,用到了RMQ+二分的方法.学习了用ST来快速解决RMQ问题,因此做一个小记 建表 用DP的方式来建ST. dp[i][ ...
- BZOJ3230 相似子串[后缀数组+二分+st表]
BZOJ3230 相似子串 给一个串,查询排名i和j的子串longest common suffix和longest common prefix 思路其实还是蛮好想的,就是码起来有点恶心.可以发现后缀 ...
随机推荐
- 安装Centos 7 并且配置远程登录
安装: 1.安装VMware fusion.https://www.vmware.com/cn/products/fusion/fusion-evaluation.html 2.下载centos 7 ...
- DOM-BOM-EVENT(7)
7.事件深入 7.1.事件捕获 事件流分为事件冒泡和事件捕获两种,事件冒泡指事件从里往外传播,而事件捕获刚好相反,指事件从外向內传播 <!DOCTYPE html> <html la ...
- .NET Core加解密实战系列之——消息摘要与数字签名算法
目录 简介 功能依赖 消息摘要算法 MD算法 家族发展史 应用场景 代码实现 MD5 示例代码 SHA算法 应用场景 代码实现 SHA1 SHA256 示例代码 MAC算法 HMAC算法的典型应用 H ...
- C# 接口(interface) 抽象类(abstract)
类代码: interface Employee { void ShowEmp(); } abstract class EmployeeInPostion: Employee { public abst ...
- oracle 环境变量配置 字符集编码配置
字符编码的环境变量配置: http://jingyan.baidu.com/article/e73e26c0c20f1a24adb6a73e.html (1).数据库服务器字符集select * fr ...
- node实现文件属性批量修改(文件名)
前言 书接上回,我们实现了批量修改文件的时间,但是却没有实现文件名称的批量修改,是因为我也说过,没有界面的话直接在命令行实现显得有点繁琐,所以我们就通过接口+界面的方式来实现我们这个小需求吧.所以,闲 ...
- 每日一题 - 剑指 Offer 37. 序列化二叉树
题目信息 时间: 2019-06-29 题目链接:Leetcode tag:序列化 二叉树 队列 难易程度:中等 题目描述: 请实现两个函数,分别用来序列化和反序列化二叉树. 示例: 1 / \ 2 ...
- SCOI 2016 萌萌哒
SCOI 2016 萌萌哒 solution 有点线段树的味道,但是并不是用线段树来做,而是用到另外一个区间修改和查询的利器--ST表 我们可以将一个点拆成\(logN\)个点,分别代表从点\(i\) ...
- 「HAOI2015树上染色」「树形DP」
其实我还不大会树形DP 此题就当练手叭,缕一下思路就好 题目链接 BZOJ4033 题目大意就是给一棵树,对一部分点染成黑色,剩下的为白色,问所有同色点距离之和....... 简明扼要的题意,然额我不 ...
- 02 . SaltStack高级用法(Python API)
Python API简单使用 第一条命令 /usr/bin/salt默认使用的接口是LocalClient,该接口只能在salt master上使用 >>> import salt. ...