1.题目说明

Given a binary tree, find the maximum path sum.

 

The path may start and end at any node in the tree.

 

For example:

Given the below binary tree,

 

       1

      / \

     2   3

Return 6.

 

2.解法分析:

leetcode中给出的函数头为:int maxPathSum(TreeNode *root)

给定的数据结构为:

Definition for binary tree

 * struct TreeNode {

 *     int val;

 *     TreeNode *left;

 *     TreeNode *right;

 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}

 * };

乍一看这道题我就递归,每一条路径都会有一个最高节点,整棵树的最高节点是root,因此,对整棵树而言,和最长的路径只有三种情况:

  • 路径的最高节点为root
  • 路径的最高节点在root的左子树中
  • 路径的最高节点在root的右子树中

所以,这题可以递归来做,需要考虑的是路径中至少有一个节点,不能是空路径,这会给编码带来一定的麻烦,而且,虽然有了刚才的三个分类,怎么求三种情况下的最长路径呢?我们定义从节点A往下走一直到根部(可以不到根部)的路径中和最大的这个值为rootStartPathMaxSum(A),那么必然有,:

  • 如果路径的最高节点经过了root:理论上最大值为max(0,rootStartPathMaxSum(root->left) )+max(0,rootStartPathMaxSum(root->right) ) +root->val;
  • 如果路径的最高节点在root,递归计算
  • 如果路径的最高节点在root右侧,递归计算

最后比较这三种得出的值即可。

rootStartPathMaxSum(TreeNode *)这个函数的计算我最开始的算法是递归的。于是得出了下面一份代码。

/**

 * Definition for binary tree

 * struct TreeNode {

 *     int val;

 *     TreeNode *left;

 *     TreeNode *right;

 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}

 * };

 */

class Solution {

public:

    int maxPathSum(TreeNode *root) {

        // Start typing your C/C++ solution below

        // DO NOT write int main() function

        if(root == NULL)return 0;

        if(root->left == NULL && root->right == NULL)

        {

            return root->val;

        }

        

        int case_both_side = max(0,rootStartPathMaxSum(root->left))+max(0,rootStartPathMaxSum(root->right))+root->val;

        

        if(root->left!=NULL && root->right == NULL)

        {

            return max(case_both_side,maxPathSum(root->left));

        }

        

        if(root->left==NULL && root->right != NULL)

        {

            return max(case_both_side,maxPathSum(root->right));

        }

        

        else

            return max(max(maxPathSum(root->left),maxPathSum(root->right)),case_both_side);

        

    }

    

    // 从root开始往根出发的和最长路径,不一定要到达根部

    int rootStartPathMaxSum(TreeNode *root)

    {

        if(root == NULL)return 0;

        

        if(root->left == NULL&& root->right == NULL)return root->val;

        

        if(root->left == NULL && root->right != NULL)

        {

            return max(root->val,root->val+rootStartPathMaxSum(root->right));

        }

        

        if(root->left != NULL && root->right ==NULL)

        {

            return max(root->val,root->val+rootStartPathMaxSum(root->left));

        }

        

        return max(max(rootStartPathMaxSum(root->left)+root->val,rootStartPathMaxSum(root->right)+root->val),root->val);

    }

};

 

在小数据集上运行良好,但是一到大数据集就hold不住了,运行结果如下:

其实写的过程就意识到了rootStartPathMaxSum有很多次被重复调用,于是得采用一种自底向上的算法,自己想了半天没想出来,结果网上搜到了一个神代码,我承认,很精妙,记录一下,学习一下:

/**

 * Definition for binary tree

 * struct TreeNode {

 *     int val;

 *     TreeNode *left;

 *     TreeNode *right;

 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}

 * };

 */

class Solution {

public:

    int maxPathSum(TreeNode *root) {

        // Start typing your C/C++ solution below

        // DO NOT write int main() function

        if (root == NULL)

            return 0;

        int max = root->val;

        getPathSum(root, max);

        return max;

    }

 

private:

    int getPathSum(TreeNode *root, int &max) {

        if (root == NULL)

            return 0;

        int leftSum = getPathSum(root->left, max);

        int rightSum = getPathSum(root->right, max);

        if (leftSum + root->val + rightSum > max)

            max = leftSum + root->val + rightSum;

        int subPathSum = leftSum > rightSum ? leftSum : rightSum;

        subPathSum += root->val;

        return subPathSum > 0 ? subPathSum : 0;

    }

};

转载自:http://blog.csdn.net/niaokedaoren/article/details/8798528

 

总的来说,我的算法思路跟这位是一样的,可惜实现思路的功底却差了很多,加油!


后记: 回去略微思索,上述思路中用一个max记录了当前最大值,leftsum和rightSum正是我所想追求的自底向上的中间变量,学习了,不过我的算法的有点事可以用两个中间变量保存起点和终点,这样就有利于路径记录。

leetcode–Binary Tree Maximum Path Sum的更多相关文章

  1. [leetcode]Binary Tree Maximum Path Sum

    Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...

  2. LeetCode: Binary Tree Maximum Path Sum 解题报告

    Binary Tree Maximum Path SumGiven a binary tree, find the maximum path sum. The path may start and e ...

  3. 二叉树系列 - 二叉树里的最长路径 例 [LeetCode] Binary Tree Maximum Path Sum

    题目: Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start ...

  4. [LeetCode] Binary Tree Maximum Path Sum 求二叉树的最大路径和

    Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...

  5. C++ leetcode Binary Tree Maximum Path Sum

    偶然在面试题里面看到这个题所以就在Leetcode上找了一下,不过Leetcode上的比较简单一点. 题目: Given a binary tree, find the maximum path su ...

  6. [LeetCode] Binary Tree Maximum Path Sum(最大路径和)

    Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...

  7. [leetcode]Binary Tree Maximum Path Sum @ Python

    原题地址:https://oj.leetcode.com/problems/binary-tree-maximum-path-sum/ 题意: Given a binary tree, find th ...

  8. [Leetcode] Binary tree maximum path sum求二叉树最大路径和

    Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...

  9. LeetCode Binary Tree Maximum Path Sum 二叉树最大路径和(DFS)

    题意:给一棵二叉树,要求找出任意两个节点(也可以只是一个点)的最大路径和,至少1个节点,返回路径和.(点权有负的.) 思路:DFS解决,返回值是,经过从某后代节点上来到当前节点且路径和最大的值.要注意 ...

随机推荐

  1. 【扩展欧几里得】Codevs 1200: [noip2012]同余方程

    Description 求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解. Input Description 输入只有一行,包含两个正整数 a, b,用 一个 空格隔开. Outpu ...

  2. DLL搜索路径和DLL劫持

    DLL搜索路径和DLL劫持 环境:XP SP3 VS2005 作者:magictong 为什么要把DLL搜索路径(DLL ORDER)和DLL劫持(DLL Hajack)拿到一起讲呢?呵呵,其实没啥深 ...

  3. Side by Side Assembly介绍--manifest文件的使用

    什么是Side-by-Side Assembly? Side-by-Side Assembly(建称SxS)是微软在Visual Studio 2005(Windows 2000?)中引入的技术,用来 ...

  4. 实例讲解Nginx下的rewrite规则

    一.正则表达式匹配,其中:* ~ 为区分大小写匹配* ~* 为不区分大小写匹配* !~和!~*分别为区分大小写不匹配及不区分大小写不匹配二.文件及目录匹配,其中:* -f和!-f用来判断是否存在文件* ...

  5. SPRING IN ACTION 第4版笔记-第八章Advanced Spring MVC-007-给flowl加权限控制<secured>

    States, transitions, and entire flows can be secured in Spring Web Flow by using the <secured> ...

  6. 省市区 Mysql 数据库表

    1.查省SELECT * FROM china WHERE china.Pid=02.查市SELECT * FROM chinaWHERE china.Pid=3300003.查区SELECT * F ...

  7. C# winform DataGridView

    C# DataGridView控件动态添加新行 DataGridView控件在实际应用中非常实用,特别需要表格显示数据时.可以静态绑定数据源,这样就自动为DataGridView控件添加相应的行.假如 ...

  8. Smallest unused ID

    http://www.codewars.com/kata/smallest-unused-id Description: Hey awesome programmer! You've got much ...

  9. Java数据库增删改查

    数据库为MySQL数据库,Oracle数据库类似: create database db_test;--创建数据库 ';--创建用户 grant all privileges on db_test.* ...

  10. Ubuntu安装已经下载好的文件包

    默认的文件下载都在 ~/Downloads 文件夹里面. 按 ctrl+alt+t 打开命令. 1.解压下载好的文件包,如: tar -xvf Sublime\ Text\ 2.0.2.tar.bz2 ...