spark 基础
scala版 ,基本名词概念及 rdd的基本创建及使用
var conf = new SparkConf()
var sc: SparkContext = new SparkContext(conf)
val rawRDDA = sc.parallelize(List("!! bb ## cc","%% cc bb %%","cc && ++ aa"),3)
# sc.parallelize(,3) 将数据并行加载到三台机器上
var tmpRDDA1 = rawRDDA.flatMap(line=>line.split(" "))
var tmpRDDA2 = tmpRDDA1.filter(allWord=>{allWord.contains("aa") || allWord.contains("bb")})
var tmpRDDA3 = tmpRDDA2.map(word=>(word,1))
import org.apache.spark.HashPartitioner
var tmpRDDA4 = tmpRDDA.partitionBy(new HashPartitioner(2)).groupByKey()
#partitionBy(new HashPartitioner(2)).groupByKey 将之前的3台机器Shuffle成两台机器
var tmpResultRDDA = tmpRDDA4.map((P:(String,Iterable[Int]))=>(P._1,P._2.sum))
#对相同的key的value进行求和
Partition :某机上一个固定数据块 , 一系列相关Partition组合为一个RDD 。
如tmpRDDA2拥有3个Partition ,而 tmpResultRDDA拥有两个Partition
RDD :数据统一操作所在地, 代码中任意一个操作(如faltMap,filter,map), RDD内的所有Partition都会执行
如在rawRDDA->tmpRDDA1时 ,执行flatMap(line=>line.split(" ")),则rawRDD 的三个Partition (分别为 cslave0上的“!! bb ## cc”,
cslave1上的“-- cc bb $$”和cslave2上的“cc ^^ ++ aa”都要执行flatMap操作)
RDD 是数据并行化所在地 ,隶属于某RDD的所有Partition都要执行相同操作,当这些Partition存在于不同机器,就会由不同机器同时执
行,也就是并行执行
RDD并行化范式主要有Map和Shuffle
Map 范式 :只对本Partition上的数据进行操作, 操作的数据对象不跨越多个Partition,即不跨越网络 。
Shuffle范式 : 对不同Partition上的数据进行重组,其操作的数据对象跨越多个甚至是所有Partition ,即跨越网络
场景 :多输入源
两个原始文件rawFile1 和 rawFile2,要求将rawFile1的内容均匀加载到cslave3,cslave4上,接着对rawFile1进行数据去重,
要求将rawFile2加载到cslave5,然后将rawFile1的处理结果中 去掉rawFile2中所含的条目
var conf = new SparkConf()
var sc: SparkContext = new SparkContext(conf)
var rawRDDB = sc.parallelize(List(("xx",99),("yy",88),("xx",99),("zz",99)),2)
var rawRDDC = sc.parallelize(List(("yy",88)),1)
var tmpResultRDDBC = rawRDDB.distinct.subtract(rawRDDC)
subtract()就是两个RDD相减,而这两个RDD来自不同的输入文件
场景:复杂情况
初始化多个rdd,相互取并集或差集
多输入源,去重,装换,再合并
var conf = new SparkConf()
var sc:SparkContext = new SparkContext(conf)
var rawRDDA = sc.parallelize(List("!! bb ## cc","%% cc bb %%","cc && ++ aa"),3)
var rawRDDB = sc.paralleliz(List(("xx,99),("yy",88),("xx",99),("zz",99)),2)
var rawRDDC = sc.parallelize(List(("yy",88)),1)
import org.apache.spark.HashPartitioner
var tmpResultRDDA = rawRDDA.flatMap(line=>line.split(" ")).filter(allWord=>{allWord.contains("aa")||allWord.contains("bb")}).map(word=>(word,1)).partitionBy(new HashPartitioner(2)).groupByKey().map((P:String,Iterable[Int]))=>(P._1,P._2.sum))
var tmpResultRDDBC = rawRDDB.distinct.subtract(rawRDDC)
var resultRDDABC = tmpResultRDDA.union(tmpResultRDDBC)
resultRDDABC.saveAsTextFile("HDFS路径")
map范式作用于RDD时,不会改变前后两个RDD内Partition数量, 当partitionBy,union作用于RDD时,会改变前后两个RDD内Partition数量
RDD持久化到HDFS时,RDD对应一个文件夹,属于该RDD的每个Partition对应一个独立文件
RDD之间的中间数据不存入本地磁盘或HDFS
RDD的多个操作可以用点‘.’连接,如 RDD1.map().filter().groupBy()
RDD可以对指定的某个Partition进行操作,而不更改其他Partition
Spark-app执行流程:
1.用户调用RDD API接口,编写rdd转换应用代码
2.使用spark提交job到Master
3.Master收到job,通知各个Worker启动Executor
4.各个Executor向Driver注册 (用户编写的代码和提交任务的客户端统一称Driver)
5.RDD Graph将用户的RDD串组织成DAG-RDD
6.DAGSchedule 以Shuffle为原则(即遇Shuffle就拆分)将DAG-RDD拆分成一系列StageDAG-RDD(StageDAG-RDD0->StageDAG-RDD1->StageDAG-rdd2->...)
7.RDD通过访问NameNode,将DataNode上的数据块装入RDD的Partition
8.TaskSchedule将StageDAG-RDD0发往隶属于本RDD的所有Partition执行,在Partition执行过程中,Partition上的Executor优先执行本Partition.
9.TaskSchedule将StageDAG-RDD1发往隶属于本RDD(已改变)的所有Partition执行
10.重复上面8,9步的步骤,直至执行完所有Stage-DAG-RDD
资源隔离性
每个执行的Spark-APP都有自己一系列的Executor进程(分布在不同的机器上或内核上),这些Executor会协作完成该任务。
单个Executor会以多线程复用方式运行该Spark-APP分配来的所有Task .
一个Executor只属于一个Spark-APP,一个Spark-APP可以有多个Executor
这与MapReduce不同。 比如某个由Map->Reduce1->Reduce2构成的ML-App,有十个Slave同时执行该任务,从某一个slave机器上来看,
MapReduce框架执行时会启动Map进程,Reduce1进程,Reduce2进程,三个进程顺序执行该任务
而Spark则使用一个Executor进程完成这四个操作。
spark-APP本身感知不到集群的存在
spark 基础的更多相关文章
- 【原创 Hadoop&Spark 动手实践 5】Spark 基础入门,集群搭建以及Spark Shell
Spark 基础入门,集群搭建以及Spark Shell 主要借助Spark基础的PPT,再加上实际的动手操作来加强概念的理解和实践. Spark 安装部署 理论已经了解的差不多了,接下来是实际动手实 ...
- 最全的spark基础知识解答
原文:http://www.36dsj.com/archives/61155 一. Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduc ...
- Hadoop Spark 基础教程
0x01 Hadoop 慕课网 https://www.imooc.com/learn/391 Hadoop基础 慕课网 https://www.imooc.com/learn/890 Hadoop ...
- 【一】Spark基础
Spark基础 什么是spark 也是一个分布式的并行计算框架 spark是下一代的map-reduce,扩展了mr的数据处理流程. Spark架构原理图解 RDD[Resilient Distrib ...
- Spark 基础操作
1. Spark 基础 2. Spark Core 3. Spark SQL 4. Spark Streaming 5. Spark 内核机制 6. Spark 性能调优 1. Spark 基础 1. ...
- Spark基础学习精髓——第一篇
Spark基础学习精髓 1 Spark与大数据 1.1 大数据基础 1.1.1 大数据特点 存储空间大 数据量大 计算量大 1.1.2 大数据开发通用步骤及其对应的技术 大数据采集->大数据预处 ...
- Spark基础排序+二次排序(java+scala)
1.基础排序算法 sc.textFile()).reduceByKey(_+_,).map(pair=>(pair._2,pair._1)).sortByKey(false).map(pair= ...
- spark基础知识(1)
一.大数据架构 并发计算: 并行计算: 很少会说并发计算,一般都是说并行计算,但是并行计算用的是并发技术.并发更偏向于底层.并发通常指的是单机上的并发运行,通过多线程来实现.而并行计算的范围更广,他是 ...
- Spark基础-scala学习(三、Trait)
面向对象编程之Trait trait基础知识 将trait作为接口使用 在trait中定义具体方法 在trait中定义具体字段 在trait中定义抽象字段 trait高级知识 为实例对象混入trait ...
- spark基础知识
1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架. dfsSpark基于mapreduce算法实现的分布式计算,拥有HadoopM ...
随机推荐
- webpack打包 The 'mode' option has not been set, webpack will fallback to
webpack 打包报错 The 'mode' option has not been set, webpack will fallback to 'production' for,Module no ...
- May 19th, 2019. Week 21st, Sunday
Fight for what matters to you. 为自己珍视的东西奋斗吧! We all want to make our life goals true, and we all expe ...
- TensorFlow从1到2(十一)变分自动编码器和图片自动生成
基本概念 "变分自动编码器"(Variational Autoencoders,缩写:VAE)的概念来自Diederik P Kingma和Max Welling的论文<Au ...
- java8-02-再探Lambda表达式
Lambda表达式 主要作用替代匿名内部类 达到简化代码的操作 Lambda表达式 在对象中的使用 Employee类
- Redux API
Redux API Redux的API非常少.Redux定义了一系列的约定(contract),同时提供少量辅助函数来把这些约定整合到一起. Redux只关心如何管理state.在实际的项目中 ...
- 调用百度语音AI实现语音的识别和合成
#coding:utf-8 ## 先去ffmpeg官网下载(https://ffmpeg.zeranoe.com/builds/),好了之后解压缩,配一下环境变量 ## 打开cmd,运行命令,安装如下 ...
- 算法问题实战策略 BOARDCOVER
地址 https://algospot.com/judge/problem/read/BOARDCOVER 解法 DFS 最近似乎在简单DFS上花费太多时间了 首先扫描地图 统计可覆盖的元素个数 如果 ...
- .NET Core 序列化对象输出字节数大小比较
写代码验证了一下 .NET Core 中序列化对象输出字节数大小,.NET Core 版本是 3.0.100-preview8-013656 ,对象属性使用了 Guid 与 DateTime 类型,胜 ...
- Ansible 日常使用技巧 - 运维总结
Ansible默认只会创建5个进程并发执行任务,所以一次任务只能同时控制5台机器执行.如果有大量的机器需要控制,例如20台,Ansible执行一个任务时会先在其中5台上执行,执行成功后再执行下一批5台 ...
- 洛谷 P4999(数位DP)
###洛谷 P4999 题目链接 ### 题目大意:给你一个区间,求这段区间中所有数的,数位上的,数字之和. 分析: 这题与 洛谷 P2602 相似,稍微改一下就可以了. 求出 0 ~ 9 的个数,然 ...