Computer Science An Overview _J. Glenn Brookshear _11th Edition

A weak form of cohesion is known as logical cohesion. This is the cohesion within a module induced by the fact that its internal elements perform activities logically similar in nature. For example, consider a module that performs all of a system’s communication with the outside world. The “glue” that holds such a module together is that all the activities within the module deal with communication. However, the topics of the communication can vary greatly. Some may deal with obtaining data, whereas others deal with reporting results.

A stronger form of cohesion is known as functional cohesion, which means that all the parts of the module are focused on the performance of a single activity. In an imperative design, functional cohesion can often be increased by isolating subtasks in other modules and then using these modules as abstract tools. This is demonstrated in our tennis simulation example (see again Figure 7.3) where the module ControlGame uses the other modules as abstract tools so that it can concentrate on overseeing the game rather than being distracted by the details of serving, returning, and maintaining the score.

In object-oriented designs, entire objects are usually only logically cohesive because the methods within an object often perform loosely related activities— the only common bond being that they are activities performed by the same object. For example, in our tennis simulation example, each player object contains methods for serving as well as returning the ball, which are significantly different activities. Such an object would therefore be only a logically cohesive module. However, software designers should strive to make each individual method within an object functionally cohesive. That is, even though the object in its entirety is only logically cohesive, each method within an object should perform only one functionally cohesive task (Figure 7.7).

functional cohesion的更多相关文章

  1. 《Code Complete》ch.7 高质量的子程序

    WHAT? 子程序(routines)是为实现一个特定目的而编写的可被调用的方法或过程.在C++中是函数(function),在Java中是方法(method),在VB中是函数过程(function ...

  2. js函数设计原则

    一般认为函数指具有返回值的子程序,过程指没有返回值的子程序.C++中把所有子程序成为函数,其实那些返回值为void的 函数在语义上也是过程.函数与过程的区别更多是语义上的区别,而不是语法的区别. 语言 ...

  3. software quality assurance 常见问题收录

    1. What is Quality? Quality means, “meeting requirements.” ..Whether or not the product or service d ...

  4. FunDA(0)- Functional Data Access accessible to all

    大数据.多核CPU驱动了函数式编程模式的兴起.因为函数式编程更适合多线程.复杂.安全的大型软件编程.但是,对许多有应用软件开发经验的编程者来说,函数式编程模式是一种全新的.甚至抽象的概念,可能需要很长 ...

  5. "Becoming Functional" 阅读笔记+思维导图

    <Becoming Functional>是O'Reilly公司今年(2014)7月发布的一本薄薄的小册子,151页,介绍了函数式编程的基本概念.全书使用代码范例都是基于JVM的编程语言, ...

  6. Beginning Scala study note(4) Functional Programming in Scala

    1. Functional programming treats computation as the evaluation of mathematical and avoids state and ...

  7. Functional Programming without Lambda - Part 2 Lifting, Functor, Monad

    Lifting Now, let's review map from another perspective. map :: (T -> R) -> [T] -> [R] accep ...

  8. Functional Programming without Lambda - Part 1 Functional Composition

    Functions in Java Prior to the introduction of Lambda Expressions feature in version 8, Java had lon ...

  9. titit. 深入理解 内聚( Cohesion)原理and  attilax大总结

    atitit. 深入理解 内聚( Cohesion)原理and  attilax大总结         1.1. 内聚的概念 1 1.1.1. 高内聚模式关于这个问题给出的答案是:分配职责,使其可保持 ...

随机推荐

  1. 必应缤纷桌面的必应助手-软件分析和用户市场需求之-----二.体验部分 Ryan Mao (毛宇11061171) (完整版本请参考团队博客)

    <必应缤纷桌面的必应助手> 2.体验部分 Ryan Mao (毛宇11061171) (完整分析报告请参考团队博客http://www.cnblogs.com/Z-XML/) 我花了2天的 ...

  2. Android安卓知识点

    1 包名是唯一标识apk的记号,相当于公民身份证号. 2 ADB是Android Debug Brigde 的英文缩写,意思是Android程序调试桥,使用SDK自带的工具可以对Android模拟器或 ...

  3. 建模算法(十)——灰色理论之关联度分析

    一.数据变换技术 为了保证建模的质量和系统分析结果的准确性,对原始的数据要进行去量纲处理. 1.定义 设有序列,则成映射为序列x到序列y的数据变换. (1) f 是初值化变换. (2) f 是均值化变 ...

  4. 很多k线形态或k线组合是需要验证的

    1.十字星:表明多空力量平衡.是否翻转,需要验证. 2.要反应市场心理的k线才是有效的K线,不然就是伪k或伪k线形态.

  5. Eclipse 导入 Hadoop 源码

    1.准备工作 jdk: eclipse: Maven: libprotoc :https://developers.google.com/protocol-buffers/ hadoop:http:/ ...

  6. awk命令

    awk 手册   原文 Table of Contents 1. awk简介 2. awk命令格式和选项 2.1. awk的语法有两种形式 2.2. 命令选项 3. 模式和操作 3.1. 模式 3.2 ...

  7. OUYA游戏开发核心技术剖析OUYA游戏入门示例——StarterKit

    第1章  OUYA游戏入门示例——StarterKit StarterKit是一个多场景的游戏示例,也是OUYA官方推荐给入门开发者分析的第一个完整游戏示例.本章会对StarterKit做详细介绍,包 ...

  8. 不用写软件,纯JS 实现QQ空间自动点赞

    这里分享一个自己写的点赞JS,已实现了好友动态.右侧栏猜你喜欢 点赞,有兴趣的朋友可以加上去玩玩.打开浏览器的开发者模式运行就可以看到效果了 var count = 0; var total = 0; ...

  9. 状态压缩 + 暴力 HDOJ 4770 Lights Against Dudely

    题目传送门 题意:有n*m的房间,'.'表示可以被点亮,'#'表示不能被点亮,每点亮一个房间会使旁边的房间也点亮,有意盏特别的灯可以选择周围不同方向的房间点亮.问最少需要多少灯使得所有房间点亮 分析: ...

  10. BZOJ3289 Mato的文件管理(莫队算法+树状数组)

    题目是区间逆序数查询. 莫队算法..左或右区间向左或右延伸时加或减这个区间小于或大于新数的数的个数,这个个数用树状数组来统计,我用线段树超时了.询问个数和数字个数都记为n,数字范围不确定所以离散化,这 ...