[vijos1144]小胖守皇宫<树形dp>
题目链接:https://vijos.org/p/1144
woc我竟然A了,这道经典的树形dp或者说是树形dp的入门题我终于过了,虽然之前做过一些树形dp的题,但是这题开始还是一脸懵逼,dp方程如何定义都知道,但是不懂转移啊,这就有点伤了。。
dp方程定义dp[i][1]节点i 选自己
dp[i][2]节点i选自己的儿子==不选自己和父亲
dp[i][3]节点i选自己的父亲==不选自己选父亲
然后就是转移了。。毕竟是基础题嘛,所以转移也不难
转移的时候我们是直接递归到叶节点然后再做前面的。。所以我们不用考虑父节点的状态
dp[i][1]选自己的时候,儿子节点就有两种方式,选儿子自己,或者选儿子的父亲dp[i][1]+=min(dp[son][1],dp[son][3]);
dp[i][2]选儿子时 ,儿子就选或不选两个方式,但是如果一旦所有的儿子都是不选了,我们就要找一个最小的儿子树的值在最后加上,
dp[i][2]+=min(dp[son][1],dp[son][2])如果全部选了2,就要在结尾加上dp[i][2]+=min(dp[son][1]-dp[son][2])
至于为啥加这个,就是这道题唯一有点思考难度的地方了,因为你是要加最小的儿子选一个的值,所以找到最小,比如时第s2个儿子,之前已经加了dp[s2][2],所以最后的时候是加上dp[s2][1]-dp[s2][2],相当于把之前的那个dp[s2][2]抵消了,就不会加重复
dp[i][3]选父亲时,因为我们是从子往父推,所以不从父亲转移,就考虑这时候的儿子节点,儿子节点来源就是儿子自己放和儿子的儿子放
dp[i][3]+=min(dp[son][1],dp[son][2]);
好吧这就是这道题的全部了,最后只需要输出根节点的选自己和选儿子方案的最小值就可,因为根没有父亲。。。
储存这个关系的方式有两种,一种是链表,一种是多叉树转二叉树,
两种方式的不同点在于链表是双向的,然后重新建树,默认1为根节点
而多叉树转二叉树是以题目给的关系建树,以没有父亲的点为根
链表:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<queue>
#define maxn 1505
using namespace std; int f[maxn][],n;
struct edge{
int u,v,w,nxt;
}e[maxn*];
int a[maxn],head[maxn],vis[maxn],tot; void adde(int u,int v){
tot++;
e[tot].u=u;e[tot].v=v;
e[tot].nxt=head[u];
head[u]=tot;
} void work(int x){
f[x][]=a[x];
int s=0x3f3f3f,p=;
for(int i=head[x];i!=-;i=e[i].nxt){
int v=e[i].v;
if(vis[v]==)continue;
vis[v]=;
work(v);
f[x][]+=min(f[v][],f[v][]);
if(f[v][]<f[v][]){
f[x][]+=f[v][],p=;
}else{
f[x][]+=f[v][],s=min(s,f[v][]-f[v][]);
}
f[x][]+=min(f[v][],f[v][]);
}
if(p==)f[x][]+=s;
} int main(){
memset(head,-,sizeof(head));
scanf("%d",&n);
for(int i=;i<=n;i++){
int num,val,sum;
scanf("%d%d%d",&num,&val,&sum);
a[num]=val;
for(int j=;j<=sum;j++){
int b;
scanf("%d",&b);
adde(num,b);adde(b,num);
}
}
vis[]=;work();
printf("%d",min(f[][],f[][]));
}
多叉树转二叉树
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<queue>
#define maxn 3005
using namespace std; int n,m,a[maxn],root;
int f[maxn][],vis[maxn];
int lson[maxn],rson[maxn],fa[maxn]; void work(int x)
{
f[x][]=a[x];
int s=0x3f3f3f,p=;
for(int i=lson[x];i!=;i=rson[i]){
work(i);
if(f[i][]<f[i][]){
f[x][]+=f[i][];s=min(f[i][]-f[i][],s);
}else f[x][]+=f[i][],p=;
f[x][]+=min(f[i][],f[i][]);
f[x][]+=min(f[i][],f[i][]);
}
if(p==)f[x][]+=s;
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++){
int num,val,q;
scanf("%d%d%d",&num,&val,&q);
a[num]=val;
for(int j=;j<=q;j++){
int s,now=lson[num];
scanf("%d",&s);
fa[s]=num;
if(j==)lson[num]=s;
else {
while(rson[now]!=){
now=rson[now];
}
rson[now]=s;
}
}
}
for(int i=;i<=n;i++)
if(fa[i]==)work(i),root=i;
printf("%d",min(f[root][],f[root][]));
}
提醒一点,多叉树转二叉树需要在执行dp之前跑个O(n)找到根节点
[vijos1144]小胖守皇宫<树形dp>的更多相关文章
- 【树形dp】vijos1144小胖守皇宫
细节很精妙 描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步一岗,五步 ...
- Vijos1144小胖守皇宫【树形DP】
皇宫看守 太平王世子事件后,陆小凤成了皇上特聘的御前一品侍卫.皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步一岗,五步一哨,每个宫殿都要有人全天候看 ...
- Vijos 1144 小胖守皇宫 【树形DP】
小胖守皇宫 描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步一岗,五步 ...
- 树形dp 之 小胖守皇宫
题目描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:有边相连的宫殿间可以互相望见.大内保卫森严,三步一岗,五步一 ...
- 小胖守皇宫(VIJOS P1144 )题解
题目描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步一岗,五步一哨,每 ...
- vijos 小胖守皇宫
点击打开题目 树形DP 显然会想到某个点放或不放守卫来定义状态,但在不放的情况下,需要分类讨论是父亲放还是一个儿子放,于是定义以下状态: f[root][0]表示自己不放,父亲也不放 f[root][ ...
- 【vijos1144】小胖守皇宫(树形DP)
描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步一岗,五步一哨,每个宫 ...
- vijos1144(小胖守皇宫)
也是ural1039 描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步 ...
- 树形DP 复习
树形DP 树形DP:建立在树上的动态规划 一般有两种传递方式:根→叶或叶→根 前者出现在换根DP中,一般操作是求出某一个点的最优解,再通过这一个点推知其他点的最优解. 后者是树形DP的常见形式,一般树 ...
随机推荐
- c/s用户与服务器之间的传输
####第一页 <%@ page language="java" contentType="text/html; charset=UTF-8" pageE ...
- ElementUI el-table 在flex下的宽度自适应问题
BUG:在flex容器下面的一个flex:1的子容器里面写了个el-table用来展示列表数据,在做宽度自适应测试的时候发现该组件的宽度只会增加不会缩小. Debug:通过控制台发现组件生成的tabl ...
- 李宏毅深度学习与人类语言处理-introduction
深度学习与人类语言处理(Deep learning for Human Language Processing) 李宏毅老师深度学习与人类语言处理课程笔记,请看正文 这门课会学到什么? 为什么叫人类语 ...
- 解析Laravel框架下的Contracts契约
Contracts Laravel 的契约是一组定义框架提供的核心服务的接口, 例如我们在介绍用户认证的章节中到的用户看守器契约IllumninateContractsAuthGuard 和用户提供器 ...
- 11.C++ 动态内存管理
在dll中malloc的内存, 必须要在dll中free掉,否则无法编译通过 //dll文件 #include <stdio.h> #include <iostream> #d ...
- 练习div出现的小问题
一.出现图片不显示状况1.class中设定的名字不对2.在高单位后面出现了 “:“ 所以也不显示3.上一个div盒子没有写结束标签 4.在添加背景图,把height的值改成auto后不显示,填上具体数 ...
- js Number方法总结
Number构造属性 Number.EPSILON // 两个可表示(representable)数之间的最小间隔. Number.MAX_SAFE_INTEGER // JavaScript 中最大 ...
- ret.data[0]._highlight = true iview table表格高亮
ret.data[0]._highlight = true iview table表格高亮
- JS中的call()方法和apply()方法用法总结(挺好 转载下)
最近又遇到了JacvaScript中的call()方法和apply()方法,而在某些时候这两个方法还确实是十分重要的,那么就让我总结这两个方法的使用和区别吧. 1. 每个函数都包含两个非继承而来的方法 ...
- 三、create-react-app新旧版中使用less和antd并修改主题颜色
引入less 如果项目根目录中没有config文件夹,首先暴露出项目配置文件,项目下执行: npm run eject 如果项目是从git仓库中pull下来的的话,必须确保本地项目与仓库中没有冲突,才 ...