题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5667

费马小定理:

假如p是质数,且gcd(a,p)=1,那么 a^(p-1)≡1(mod p)。

即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。

注意这里使用快速幂的时候要根据费马小定理对p-1取模。还有注意a%p=0的情况。

递推式:f(n)=f(n-1)*c+f(n-2)+1 非齐次。

构造矩阵:

|c  |
| |
| |

初始的矩阵:

||
||
||
 #include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <fstream>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath> using namespace std; typedef long long ll;
const ll maxn = ;
ll n, a, b, c, p; typedef struct Matrix {
ll m[maxn][maxn];
ll r;
ll c;
Matrix(){
r = c = ;
memset(m, , sizeof(m));
}
} Matrix; Matrix mul(Matrix m1, Matrix m2, ll mod) {
Matrix ans = Matrix();
ans.r = m1.r;
ans.c = m2.c;
for(ll i = ; i <= m1.r; i++) {
for(ll j = ; j <= m2.r; j++) {
for(ll k = ; k <= m2.c; k++) {
if(m2.m[j][k] == ) continue;
ans.m[i][k] = ((ans.m[i][k] + m1.m[i][j] * m2.m[j][k] % mod) % mod) % mod;
}
}
}
return ans;
} Matrix quickmul(Matrix m, ll n, ll mod) {
Matrix ans = Matrix();
for(ll i = ; i <= m.r; i++) {
ans.m[i][i] = ;
}
ans.r = m.r;
ans.c = m.c;
while(n) {
if(n & ) {
ans = mul(m, ans, mod);
}
m = mul(m, m, mod);
n >>= ;
}
return ans;
} ll qm(ll x, ll n, ll mod) {
ll ans = , t = x;
while(n) {
if(n & ) ans = (ans * t) % mod;
t = (t * t) % mod;
n >>= ;
}
return ans;
}
int main() {
// freopen("in", "r", stdin);
int T;
scanf("%d", &T);
while(T--) {
cin >> n >> a >> b >> c >> p;
Matrix r;
r.r = , r.c = ;
r.m[][] = ;
r.m[][] = ;
r.m[][] = ;
if(n == ) {
printf("1\n");
continue;
}
if(n == ) {
printf("%I64d\n", qm(a, b, p));
continue;
}
if(a % p == ) {
printf("0\n");
continue;
}
Matrix s;
s.r = s.c = ;
s.m[][] = c, s.m[][] = , s.m[][] = ;
s.m[][] = , s.m[][] = , s.m[][] = ;
s.m[][] = , s.m[][] = , s.m[][] = ;
s = quickmul(s, n-, p-);
ll ans = ;
for(int i = ; i <= r.r; i++) {
ans = (ans + (s.m[][i] * r.m[i][]) % (p - )) % (p - );
}
printf("%I64d\n", qm(a, (ans*b)%(p-), p));
}
return ;
}

[HDOJ5667]Sequence(矩阵快速幂,费马小定理)的更多相关文章

  1. hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)

    题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) ...

  2. HDU 5667 Sequence 矩阵快速幂+费马小定理

    题目不难懂.式子是一个递推式,并且不难发现f[n]都是a的整数次幂.(f[1]=a0;f[2]=ab;f[3]=ab*f[2]c*f[1]...) 我们先只看指数部分,设h[n]. 则 h[1]=0; ...

  3. HDU 5667 Sequence【矩阵快速幂+费马小定理】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5667 题意: Lcomyn 是个很厉害的选手,除了喜欢写17kb+的代码题,偶尔还会写数学题.他找到 ...

  4. hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)

    Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...

  5. M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  6. hdu4549矩阵快速幂+费马小定理

    转移矩阵很容易求就是|0  1|,第一项是|0| |1  1|             |1| 然后直接矩阵快速幂,要用到费马小定理 :假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(m ...

  7. HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submi ...

  8. hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...

  9. HDU——5667Sequence(矩阵快速幂+费马小定理应用)

    Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total S ...

  10. 2020牛客寒假算法基础集训营1 J. 缪斯的影响力 (矩阵快速幂/费马小定理降幂)

    https://ac.nowcoder.com/acm/problem/200658 f(n) = f(n-1) * f(n-2) * ab ,f的第一项是x,第二项是y. 试着推出第三项是x·y·a ...

随机推荐

  1. 使用开关、分段控件和web视图

    #import "XViewController.h" @interface XViewController () @end @implementation XViewContro ...

  2. FormCreate & FormActivate & FormShow执行顺序演示

    procedure TForm1.FormCreate(Sender: TObject);begin  form1.Caption:=form1.Caption +'+Create'; end; pr ...

  3. javascript实现数据结构与算法系列:栈 -- 顺序存储表示和链式表示及示例

    栈(Stack)是限定仅在表尾进行插入或删除操作的线性表.表尾为栈顶(top),表头为栈底(bottom),不含元素的空表为空栈. 栈又称为后进先出(last in first out)的线性表. 堆 ...

  4. 深入理解jQuery的Event机制

    jQuery的Event模块非常强大.其功能远远比原生事件监听器强大许多,对同一个元素的监听只用一个eventListener,内部则是一个强大的观察者,根据匹配事件类型触发相应回调.jQuery不仅 ...

  5. HDU 1686 Oulipo , 同 POJ 3461 Oulipo (字符串匹配,KMP)

    HDU题目 POJ题目 求目标串s中包含多少个模式串p KMP算法,必须好好利用next数组,, (kmp解析)——可参考 海子的博客  KMP算法 //写法一: #include<string ...

  6. POJ 2004 Mix and Build (预处理+dfs)

    题意: 给N个字符串,要求出一个序列,在该序列中,后一个串,是由前一个串加一个字母后得来的(顺序可以改动). 问最多能组成多长的序列.思路:将给的字符串排序,再对所有的字符串按长度从小到大排序,若长度 ...

  7. POJ 1547

    #include<iostream> #include<string> using namespace std; int main() { int length; int hi ...

  8. 一站式学习Wireshark(五):TCP窗口与拥塞处理

    https://community.emc.com/message/821593#821593 介绍 TCP通过滑动窗口机制检测丢包,并在丢包发生时调整数据传输速率.滑动窗口机制利用数据接收端的接收窗 ...

  9. Linux之proc详解

    1. /proc目录    Linux内核提供了一种通过/proc文件系统,在运行时访问内核内部数据结构.改变内核设置的机制.proc文件系统是一个伪文件系统,它只存在内存当中,而不占用外存空间.它以 ...

  10. 浅析ODS与EDW关系(转载)

    浅析ODS与EDW 关系 刘智琼 (中国电信集团广州研究院广州510630) 摘要 本文重点介绍了企业运营数据仓储(ODS)和企业数据仓库(EDW )的概念,并对ODS与EDW 之间的关系,包括两者相 ...