[HDOJ5667]Sequence(矩阵快速幂,费马小定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5667
费马小定理:
假如p是质数,且gcd(a,p)=1,那么 a^(p-1)≡1(mod p)。
即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。
注意这里使用快速幂的时候要根据费马小定理对p-1取模。还有注意a%p=0的情况。
递推式:f(n)=f(n-1)*c+f(n-2)+1 非齐次。
构造矩阵:
|c |
| |
| |
初始的矩阵:
||
||
||
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <fstream>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath> using namespace std; typedef long long ll;
const ll maxn = ;
ll n, a, b, c, p; typedef struct Matrix {
ll m[maxn][maxn];
ll r;
ll c;
Matrix(){
r = c = ;
memset(m, , sizeof(m));
}
} Matrix; Matrix mul(Matrix m1, Matrix m2, ll mod) {
Matrix ans = Matrix();
ans.r = m1.r;
ans.c = m2.c;
for(ll i = ; i <= m1.r; i++) {
for(ll j = ; j <= m2.r; j++) {
for(ll k = ; k <= m2.c; k++) {
if(m2.m[j][k] == ) continue;
ans.m[i][k] = ((ans.m[i][k] + m1.m[i][j] * m2.m[j][k] % mod) % mod) % mod;
}
}
}
return ans;
} Matrix quickmul(Matrix m, ll n, ll mod) {
Matrix ans = Matrix();
for(ll i = ; i <= m.r; i++) {
ans.m[i][i] = ;
}
ans.r = m.r;
ans.c = m.c;
while(n) {
if(n & ) {
ans = mul(m, ans, mod);
}
m = mul(m, m, mod);
n >>= ;
}
return ans;
} ll qm(ll x, ll n, ll mod) {
ll ans = , t = x;
while(n) {
if(n & ) ans = (ans * t) % mod;
t = (t * t) % mod;
n >>= ;
}
return ans;
}
int main() {
// freopen("in", "r", stdin);
int T;
scanf("%d", &T);
while(T--) {
cin >> n >> a >> b >> c >> p;
Matrix r;
r.r = , r.c = ;
r.m[][] = ;
r.m[][] = ;
r.m[][] = ;
if(n == ) {
printf("1\n");
continue;
}
if(n == ) {
printf("%I64d\n", qm(a, b, p));
continue;
}
if(a % p == ) {
printf("0\n");
continue;
}
Matrix s;
s.r = s.c = ;
s.m[][] = c, s.m[][] = , s.m[][] = ;
s.m[][] = , s.m[][] = , s.m[][] = ;
s.m[][] = , s.m[][] = , s.m[][] = ;
s = quickmul(s, n-, p-);
ll ans = ;
for(int i = ; i <= r.r; i++) {
ans = (ans + (s.m[][i] * r.m[i][]) % (p - )) % (p - );
}
printf("%I64d\n", qm(a, (ans*b)%(p-), p));
}
return ;
}
[HDOJ5667]Sequence(矩阵快速幂,费马小定理)的更多相关文章
- hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)
题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- HDU 5667 Sequence 矩阵快速幂+费马小定理
题目不难懂.式子是一个递推式,并且不难发现f[n]都是a的整数次幂.(f[1]=a0;f[2]=ab;f[3]=ab*f[2]c*f[1]...) 我们先只看指数部分,设h[n]. 则 h[1]=0; ...
- HDU 5667 Sequence【矩阵快速幂+费马小定理】
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5667 题意: Lcomyn 是个很厉害的选手,除了喜欢写17kb+的代码题,偶尔还会写数学题.他找到 ...
- hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)
Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...
- M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- hdu4549矩阵快速幂+费马小定理
转移矩阵很容易求就是|0 1|,第一项是|0| |1 1| |1| 然后直接矩阵快速幂,要用到费马小定理 :假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(m ...
- HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Submi ...
- hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...
- HDU——5667Sequence(矩阵快速幂+费马小定理应用)
Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total S ...
- 2020牛客寒假算法基础集训营1 J. 缪斯的影响力 (矩阵快速幂/费马小定理降幂)
https://ac.nowcoder.com/acm/problem/200658 f(n) = f(n-1) * f(n-2) * ab ,f的第一项是x,第二项是y. 试着推出第三项是x·y·a ...
随机推荐
- The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near
The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near ...
- 阿里云centos配置ftp和svn全过程
1.下载xshell 2.登录centos 3.安装vsftpd [root@xxx]# yum install vsftpd //安装vsftpd [root@xxx]# chkconfig vsf ...
- 数位DP之小小结
资料链接:http://wenku.baidu.com/view/9de41d51168884868662d623.html http://wenku.baidu.com/view/d2414ffe0 ...
- SQLserver分页查询实例
Sqlserver数据库分页查询一直是Sqlserver的短板,闲来无事,想出几种方法,假设有表ARTICLE,字段ID.YEAR...(其他省略),数据53210条(客户真实数据,量不大),分页查询 ...
- 一篇不错的讲解Java异常的文章(转载)
http://www.blogjava.net/freeman1984/archive/2007/09/27/148850.html 六种异常处理的陋习 你觉得自己是一个Java专家吗?是否肯定自己已 ...
- Sqli-labs less 28a
Less-28a 本关与28基本一致,只是过滤条件少了几个. http://127.0.0.1/sqllib/Less-28a/?id=100%27)unIon%0bsElect%0b1,@@base ...
- 解决iptables和vsftpd设置的问题
解决iptables和vsftpd设置的问题 博客分类: linux/centos/ubuntu 防火墙J#工作 解决iptables和vsftpd设置的问题 修改 vi /etc/sysconfig ...
- javascript实现KMP算法(没啥实用价值,只供学习)
简单粗暴上代码 KMP的原理我就不讲了,想转过弯儿来不容易,建议大家先学会了怎么推导出next数组规律,然后准备两张纸,大纸上写上一行你要匹配的目标字符串,并分别写出位置编号,小纸上写上一行,也写上位 ...
- LCT模板
之前一直用的LCT模板,因为其实个人对LCT和Splay不是很熟,所以用起来总觉得略略的坑爹,过了一段时间就忘了,但事实上很多裸的LCT要改的东西是不多的,所以今天写了些注释,以后可能套起模板来会得心 ...
- Quant面试准备5本书
Heard on The Street: Quantitative Questions from Wall Street Job Interviews - Timothy Falcon Crack F ...