【题解】 [SCOI2011]糖果 (差分约束)
Solution:
- 首先考虑\(X=1\)的情况,我们其实只用用一下并查集把相等的点合为一个点
- 然后后面的四个式子我们就可以用差分约束了,就拿\(X=2\)的情况来说吧,我们用\(S[i]\)表示\(i\)号小朋友要拿多少糖果,如果X=2, 表示第A个小朋友分到的糖果必须少于第B个小朋友分到的糖果,我们就可以写出式子\(S[A]<S[B]\),等价于\(S[A]+1<=S[B]\),这样我们就可以从\(A\)向\(B\)连一条权值为\(1\)的边。另外,如果是\(S[A]<=S[B]\),等价于\(S[A]+0<=S[B]\),连一条\(0\)边就可以
- 还要注意的就是,数据有可能为几个联通块,所以我们要将没有进行过SPFA/Dijkstra的边为初始点开始单元最长路,还有要在最长路操作中注意判断正环,有正环输出\(-1\)
- SPFA/Dijkstra里面不要memset,会超时到死,可以传递一个下表表示这是哪一次开始SPFA/Dijkstra,这样就不会了(就是因为这个错误我TLE的好惨)
不过从5000ms到88ms超级爽啊
1. void SPFA(int k,int cs){}
2. vis[k]=cs;
3. if(vt[v]!=cs)TT[v]=1,vt[v]=cs;
else{
TT[v]++; if(TT[v]==n){wr=true;return;}
}
Code:
//It is coded by Ning_Mew on 3.28
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
#define RG register
using namespace std;
const int maxn=1e5+10;
int n,K;
int color[maxn];
int head[maxn],cnt=0;
struct Edge{
int nxt,to;LL dis;
}edge[maxn];
int ct=0;
LL dist[maxn],ans=0;
bool wr=false,be[maxn];
struct Pro{
int pl,x,y;
}pro[maxn];
int read(){
int x=0;char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x;
}
inline void add(int from,int to,LL dis){
edge[++cnt].nxt=head[from];
edge[cnt].to=to;
edge[cnt].dis=dis;
head[from]=cnt;
}
inline int getf(int k){
if(color[k]==k)return color[k];
color[k]=getf(color[k]);
return color[k];
}
int TT[maxn],vt[maxn],vis[maxn],Q[maxn+7],front=0,tail=1,again=0;
inline void SPFA(int k,int cs){
front=0;tail=1;
Q[front]=k;
vis[k]=cs; dist[k]=1;be[k]=false;
while(front<tail+maxn*again){
if(front>maxn){front%=maxn;again--;}
int u=Q[front];front++;vis[u]=cs-1;
for(int i=head[u];i!=0;i=edge[i].nxt){
int v=edge[i].to;be[v]=false;
if(dist[v]<dist[u]+edge[i].dis){
dist[v]=dist[u]+edge[i].dis;
if(vis[v]!=cs){
if(dist[v]>dist[ Q[front] ]&&front-1>=0){
front--;Q[front]=v;
}else{
if(tail>maxn){again++;tail%=maxn;}
Q[tail]=v;tail++;
}
//if(tail>maxn){again++;tail%=maxn;}
//Q[tail]=v;tail++;
vis[v]=cs;
if(vt[v]!=cs)TT[v]=1,vt[v]=cs;
else{
TT[v]++; if(TT[v]==n){wr=true;return;}
}
}
}
}
}
}
int main(){
//scanf("%d%d",&n,&K);
n=read();K=read();
for(int i=1;i<=n;i++)color[i]=i;
for(RG int i=1;i<=K;i++){
int pl,x,y;
pl=read();x=read();y=read();
//scanf("%d%d%d",&pl,&x,&y);
if(pl==1){
int color1=getf(x),color2=getf(y);
if(color1!=color2)color[color1]=color2;
continue;
}
pro[++ct].pl=pl;pro[ct].x=x;pro[ct].y=y;
}
memset(be,false,sizeof(be));
for(RG int i=1;i<=n;i++){
color[i]=getf(i);
//cout<<i<<" color="<<color[i]<<endl;
be[color[i]]=true;
}
for(RG int i=1;i<=ct;i++){
int A=color[pro[i].x],B=color[pro[i].y];
if(pro[i].pl==2){add(A,B,1);continue;}
if(pro[i].pl==3){add(B,A,0);continue;}
if(pro[i].pl==4){add(B,A,1);continue;}
if(pro[i].pl==5){add(A,B,0);continue;}
}
memset(dist,-0x5f,sizeof(dist));
int INF=dist[0],cs=0;;
for(RG int i=1;i<=n;i++){
if(be[i]){cs++;SPFA(i,cs);}
//cout<<i<<endl;
if(wr==true){printf("-1\n");return 0;}
}
for(RG int i=1;i<=n;i++){
if(dist[color[i]]!=INF)ans+=dist[color[i]];
}
printf("%lld\n",ans);
return 0;
}
【题解】 [SCOI2011]糖果 (差分约束)的更多相关文章
- BZOJ 2330 SCOI2011糖果 差分约束
2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2819 Solved: 820 题目连接 http://www ...
- P3275 [SCOI2011]糖果 && 差分约束(二)
学习完了差分约束是否有解, 现在我们学习求解最大解和最小解 首先我们回想一下是否有解的求解过程, 不难发现最后跑出来任意两点的最短路关系即为这两元素的最短路关系. 即: 最后的最短路蕴含了所有元素之间 ...
- BZOJ2330:[SCOI2011]糖果(差分约束)
Description 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的 ...
- bzoj 2330 [SCOI2011]糖果 差分约束模板
题目大意 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配 ...
- 洛谷P3275 [SCOI2011]糖果(差分约束)
题目描述 幼儿园里有 $N$ 个小朋友,$lxhgww $老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的 ...
- BZOJ 2330: [SCOI2011]糖果( 差分约束 )
坑爹...要求最小值要转成最长路来做.... 小于关系要转化一下 , A < B -> A <= B - 1 ------------------------------------ ...
- [SCOI2011]糖果 (差分约束)
题目链接 Solution 差分约束乱搞就好了. 需要注意的地方: 对于大于等于的直接联等于,应为等于,因为对于我满足条件而言,等于总是最好的. 对于等于的,注意要建双向边. 然后要开 \(long~ ...
- 【BZOJ2330】【SCOI2011】糖果 [差分约束]
2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 幼儿园 ...
- BZOJ 2330: [SCOI2011]糖果 [差分约束系统] 【学习笔记】
2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 5395 Solved: 1750[Submit][Status ...
- bzoj2330糖果——差分约束
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2330 差分约束,再建立一个源点0,向所有点连边权为1的边,表示每个人都会分到糖果: 答案较大 ...
随机推荐
- [清华集训2015 Day1]玛里苟斯-[线性基]
Description Solution 考虑k=1的情况.假设所有数中,第i位为1的数的个数为x,则最后所有的子集异或结果中,第i位为1的个数为$(C_{k}^{1}+C_{k}^{3}+...)$ ...
- 汇编 push ,pop指令
知识点: PUSH POP CALL堆栈平衡 RETN指令 一.PUSH入栈指令 (压栈指令): 格式: PUSH 操作数 //sub esp,4 ;mov [esp],EBP 操作数 ...
- pandas 索引与列相互转化
1. 准备数据 import pandas as pd from io import StringIO csv_txt = '''"date","player1" ...
- 修炼内功_day01
测试六段: 测试第一段: - 能根据测试用例的描述步骤来执行用例 - 能对照用例的预期结果发现产品的问题 - 能够清晰准确的将问题记录下来后反馈给开发, ...
- @Param注解的用法解析
实例一 @Param注解单一属性 dao层示例 Public User selectUser(@param(“userName”) String name,@param(“userpassword”) ...
- Scrum Meeting NO.5
Scrum Meeting No.5 1.会议内容 暂时料理完了编译,可以写软工了.说多了都是泪T_T 2.任务清单 徐越 序号 近期的任务 进行中 已完成 1 修改url名.参数 √ 2 学习Jso ...
- 2-Fourteenth Scrum Meeting-20151214
任务安排 成员 今日完成 明日任务 闫昊 用本地数据库记录课程结构和学习进度 修复bug 唐彬 请假(编译……) 编写与服务器交互的代码 史烨轩 请假(编译……) 获取视频url 余帆 请假( ...
- 20135316王剑桥Linux内核学习笔记
王剑桥Linux内核学习笔记 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 计算机是如何工作的 个人理 ...
- HashMap相关总结
1.HashMap:根据键值hashCode值存储数据,大多数情况下可以直接定位到它的值,但是遍历顺序不确定.所有哈希值相同的值存储到同一个链表中 Ha ...
- 派生类&简单工厂模式
派生类&简单工厂模式 git链接: Operation3.1.1 题目描述的代码部分的解释 首先是声明一个Rand类作为父类,然后两个子类RandNumber类和RandOperation类, ...