Luogu P4097 [HEOI2013]Segment 李超线段树
题目链接 \(Click\) \(Here\)
李超线段树的模板。但是因为我实在太\(Naive\)了,想象不到实现方法。
看代码就能懂的东西,放在这里用于复习。
#include <bits/stdc++.h>
using namespace std;
const int N = 100010;
#define ls (p << 1)
#define rs (p << 1 | 1)
#define mid ((l + r) >> 1)
struct Node {
int l, r, id;
double yl, yr;
Node (int x1 = 0, int y1 = 0, int x2 = 0, int y2 = 0, int i = 0) {
l = x1, r = x2, yl = y1, yr = y2, id = i;
if (l == r) {
yl = yr = max (yl, yr);
}
}
double get (int x) {return l == r ? yl : yl + (k () * (x - l));}
double k () {return (yr - yl) / (r - l);}
void lm (int x) {yl = get (x); l = x;}
void rm (int x) {yr = get (x); r = x;}
};
bool hei (Node a, Node b, int x) {
return a.get (x) == b.get (x) ? a.id < b.id : a.get (x) > b.get (x);
}
struct St {
Node tree[N << 2];
void build (int l, int r, int p) {
tree[p].l = l;
tree[p].r = r;
if (l == r) return;
build (l, mid, ls);
build (mid + 1, r, rs);
}
Node query (int t, int l, int r, int p) {
if (l == r) return tree[p];
Node res;
if (t <= mid) {
res = query (t, l, mid, ls);
} else {
res = query (t, mid + 1, r, rs);
}
return hei (res, tree[p], t) ? res : tree[p];
}
void update (int l, int r, Node k, int p) {
if (tree[p].l > k.l) k.lm (tree[p].l);
if (tree[p].r < k.r) k.rm (tree[p].r); //削足适履
if (hei (k, tree[p], mid)) swap (tree[p], k); //让tree[p]在mid上具有优势
if (min (tree[p].yl, tree[p].yr) >= max (k.yl, k.yr)) return; //如果完全覆盖
if (l == r) return; //如果大小为1
if (tree[p].k () <= k.k ()) {
update (mid + 1, r, k, rs); //如果k在后面有露出来的情况
} else {
update (l, mid, k, ls); //如果k在前面有露出来的情况
}
}
void insert (int l, int r, Node k, int p) {
if (k.l > r || k.r < l) return;
if (tree[p].l > k.l) k.lm (tree[p].l);
if (tree[p].r < k.r) k.rm (tree[p].r);
if (l == k.l && r == k.r) {
update (l, r, k, p);
return;
}
//把node一路传下去,对应区间就削成对应大小的线段
if (l == r) return;
insert (l, mid, k, ls);
insert (mid + 1, r, k, rs);
}
}T;
const int My = 1e9;
const int Mx = 39989;
int m, k, la, Ind, opt;
int main () {
T.build (1, Mx, 1);
cin >> m;
while (m--) {
cin >> opt;
if (opt == 0) {
cin >> k;
k = (k + la - 1) % Mx + 1;
la = T.query (k, 1, Mx, 1).id;
cout << la << endl;
} else {
int x0, x1, y0, y1;
cin >> x0 >> y0 >> x1 >> y1;
x0 = (x0 + la - 1) % Mx + 1;
x1 = (x1 + la - 1) % Mx + 1;
y0 = (y0 + la - 1) % My + 1;
y1 = (y1 + la - 1) % My + 1;
if (x0 > x1) {
swap (x0, x1);
swap (y0, y1);
}
Node res = Node (x0, y0, x1, y1, ++Ind);
T.insert (1, Mx, res, 1);
}
}
}
Luogu P4097 [HEOI2013]Segment 李超线段树的更多相关文章
- P4097 [HEOI2013]Segment 李超线段树
$ \color{#0066ff}{ 题目描述 }$ 要求在平面直角坐标系下维护两个操作: 在平面上加入一条线段.记第 i 条被插入的线段的标号为 i 给定一个数 k,询问与直线 x = k 相交的线 ...
- 【洛谷P4097】Segment 李超线段树
题目大意:维护一个二维平面,给定若干条线段,支持询问任意整数横坐标处对应的纵坐标最靠上的线段的 id,相同高度取 id 值较小的,强制在线. 题解:初步学习了李超线段树.李超线段树的核心思想在于通过标 ...
- BZOJ3165: [Heoi2013]Segment(李超线段树)
题意 题目链接 Sol 李超线段树板子题.具体原理就不讲了. 一开始自己yy着写差点写自闭都快把叉积搬出来了... 后来看了下litble的写法才发现原来可以写的这么清晰简洁Orz #include& ...
- 【BZOJ 3165】 [Heoi2013]Segment 李超线段树
所谓李超线段树就是解决此题一类的问题(线段覆盖查询点最大(小)),把原本计算几何的题目变成了简单的线段树,巧妙地结合了线段树的标记永久化与标记下传,在不考虑精度误差的影响下,打法应该是这样的. #in ...
- BZOJ3165[Heoi2013]Segment——李超线段树
题目描述 要求在平面直角坐标系下维护两个操作: 1.在平面上加入一条线段.记第i条被插入的线段的标号为i. 2.给定一个数k,询问与直线 x = k相交的线段中,交点最靠上的线段的编号. 输入 第一行 ...
- BZOJ.3165.[HEOI2013]Segment(李超线段树)
BZOJ 洛谷 对于线段,依旧是存斜率即可. 表示精度误差一点都不需要管啊/托腮 就我一个人看成了mod(10^9+1)吗.. //4248kb 892ms #include <cstdio&g ...
- 【BZOJ-3165】Segment 李超线段树(标记永久化)
3165: [Heoi2013]Segment Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 368 Solved: 148[Submit][Sta ...
- 【题解】Luogu P4097 [HEOI2013]Segment
原题传送门 这珂以说是李超线段树的模板题 按着题意写就行了,时间复杂度为\(O(n\log^2n)\) #include <bits/stdc++.h> #define N 40005 # ...
- 2019.02.11 bzoj3165: [Heoi2013]Segment(线段树)
传送门 题意简述:要求支持两种操作: 插入一条线段. 询问与直线x=kx=kx=k相交的线段中,交点最靠上的线段的编号. 思路: 直接上李超线段树即可. 代码: #include<bits/st ...
随机推荐
- Oracle minus用法详解及应用实例
本文转载:https://blog.csdn.net/jhon_03/article/details/78321937 Oracle minus用法 “minus”直接翻译为中文是“减”的意思,在Or ...
- react 入坑笔记(五) - 条件渲染和列表渲染
条件渲染和列表渲染 一.条件渲染 条件渲染较简单,使用 JavaScript 操作符 if 或条件运算符来创建表示当前状态的元素,然后让 React 根据它们来更新 UI. 贴一个小栗子: funct ...
- How to vi
h:left,j:down,k:up,l:right.wq #write and quitx #cut one letterdd#cut one line/ #searchs/a/b/ #replac ...
- poj-1273(最大流)
题解:纯板子题... EK算法 #include<iostream> #include<algorithm> #include<cstring> #include& ...
- Java启动命令与Maven打包设置
一.Java启动命令 java程序的启动方式有三种: 1.java -jar 生成的jar包中,manifest文件定义了Main Class,可使用该命令 java -jar test.jar 2. ...
- echo显示空行
参考: https://blog.csdn.net/zhaogang1993/article/details/80934172 原生态的解释遗漏了echo另外一个重要功能:输出空行.在DOS脚本中,有 ...
- Codeforces Round #437 Div. 1
A:显然构造一组只包含1和2面值的数据即可. #include<iostream> #include<cstdio> #include<cmath> #includ ...
- Vuex以及axios
Vuex 简介 vuex是一个专门为Vue.js设计的集中式状态管理架构. 状态? 我们把它理解为在data中需要共享给其他组件使用的部分. Vuex和单纯的全局对象有以下不同: 1.Vuex 的状态 ...
- P1140 相似基因 最长公共子序列
思路 类似于最长公共子序列 把一段基因和另外一段基因匹配 不够长的用空基因替换 #include<bits/stdc++.h> using namespace std; const in ...
- [NOIP2017] 宝藏 【树形DP】【状压DP】
题目分析: 这个做法不是最优的,想找最优解请关闭这篇博客. 首先容易想到用$f[i][S][j]$表示点$i$为根,考虑$S$这些点,$i$的深度为$j$情况的答案. 转移如下: $f[i][S][j ...