运行代码:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D LR = 0.1
REAL_PARAMS = [1.2, 2.5]
INIT_PARAMS = [[5, 4],
[5, 1],
[2, 4.5]][2] x = np.linspace(-1, 1, 200, dtype=np.float32) # x data y_fun = lambda a, b: np.sin(b*np.cos(a*x))
tf_y_fun = lambda a, b: tf.sin(b*tf.cos(a*x)) noise = np.random.randn(200)/10
y = y_fun(*REAL_PARAMS) + noise # target # tensorflow graph
a, b = [tf.Variable(initial_value=p, dtype=tf.float32) for p in INIT_PARAMS]
pred = tf_y_fun(a, b)
mse = tf.reduce_mean(tf.square(y-pred))
train_op = tf.train.GradientDescentOptimizer(LR).minimize(mse) a_list, b_list, cost_list = [], [], []
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for t in range(400):
a_, b_, mse_ = sess.run([a, b, mse])
a_list.append(a_); b_list.append(b_); cost_list.append(mse_) # record parameter changes
result, _ = sess.run([pred, train_op]) # training # visualization codes:
print('a=', a_, 'b=', b_)
plt.figure(1)
plt.scatter(x, y, c='b') # plot data
plt.plot(x, result, 'r-', lw=2) # plot line fitting
# 3D cost figure
fig = plt.figure(2); ax = Axes3D(fig)
a3D, b3D = np.meshgrid(np.linspace(-2, 7, 30), np.linspace(-2, 7, 30)) # parameter space
cost3D = np.array([np.mean(np.square(y_fun(a_, b_) - y)) for a_, b_ in zip(a3D.flatten(), b3D.flatten())]).reshape(a3D.shape)
ax.plot_surface(a3D, b3D, cost3D, rstride=1, cstride=1, cmap=plt.get_cmap('rainbow'), alpha=0.5)
ax.scatter(a_list[0], b_list[0], zs=cost_list[0], s=300, c='r') # initial parameter place
ax.set_xlabel('a'); ax.set_ylabel('b')
ax.plot(a_list, b_list, zs=cost_list, zdir='z', c='r', lw=3) # plot 3D gradient descent
plt.show()

运行结果:

TensorFlow从入门到理解(六):可视化梯度下降的更多相关文章

  1. TensorFlow从入门到理解

    一.<莫烦Python>学习笔记: TensorFlow从入门到理解(一):搭建开发环境[基于Ubuntu18.04] TensorFlow从入门到理解(二):你的第一个神经网络 Tens ...

  2. TensorFlow从入门到理解(二):你的第一个神经网络

    运行代码: from __future__ import print_function import tensorflow as tf import numpy as np import matplo ...

  3. TensorFlow从入门到理解(五):你的第一个循环神经网络RNN(回归例子)

    运行代码: import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIM ...

  4. TensorFlow从入门到理解(四):你的第一个循环神经网络RNN(分类例子)

    运行代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # set rando ...

  5. TensorFlow从入门到理解(三):你的第一个卷积神经网络(CNN)

    运行代码: from __future__ import print_function import tensorflow as tf from tensorflow.examples.tutoria ...

  6. TensorFlow从入门到理解(一):搭建开发环境【基于Ubuntu18.04】

    *注:教程及本文章皆使用Python3+语言,执行.py文件都是用终端(如果使用Python2+和IDE都会和本文描述有点不符) 一.安装,测试,卸载 TensorFlow官网介绍得很全面,很完美了, ...

  7. NN优化方法对照:梯度下降、随机梯度下降和批量梯度下降

    1.前言 这几种方法呢都是在求最优解中常常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中.都是环绕下面这个式子展开: 当中在上面的式子中hθ(x)代表.输入为x的时候的其当时θ參数下的输出值 ...

  8. 超简单tensorflow入门优化程序&&tensorboard可视化

    程序1 任务描述: x = 3.0, y = 100.0, 运算公式 x×W+b = y,求 W和b的最优解. 使用tensorflow编程实现: #-*- coding: utf-8 -*-) im ...

  9. TensorFlow学习——入门篇

    本文主要通过一个简单的 Demo 介绍 TensorFlow 初级 API 的使用方法,因为自己也是初学者,因此本文的目的主要是引导刚接触 TensorFlow 或者 机器学习的同学,能够从第一步开始 ...

随机推荐

  1. SpringBoot整合阿里Druid数据源及Spring-Data-Jpa

    SpringBoot整合阿里Druid数据源及Spring-Data-Jpa https://mp.weixin.qq.com/s?__biz=MzU0MDEwMjgwNA==&mid=224 ...

  2. [luogu2292][L语言]

    题目链接 思路 这道题我用的是AC自动机的做法. 先把子串挂到trie树上,在单词结尾打标记的时候,标记的是当前单词的长度.然后去上面查询母串的时候,每查询到一个单词,就建立一条线段,这条线段的结尾位 ...

  3. 【精】搭建redis cluster集群,JedisCluster带密码访问【解决当中各种坑】!

    转: [精]搭建redis cluster集群,JedisCluster带密码访问[解决当中各种坑]! 2017年05月09日 00:13:18 冉椿林博客 阅读数:18208  版权声明:本文为博主 ...

  4. Xml二(解析思想)、

    XML解析: * 解析xml可以做: * 如果xml作为配置文件:读取 * 如果xml作为传输文件:写,读 * xml解析思想: * DOM:将文档加载进内存,形成一颗dom树(document对象) ...

  5. 导出为word文档

    原来用freemarker就可以,真是太简便了.先设计一张文档,然后把要输出的值用freemarker取值表达式获取数据,最后保存为ftl文件,再调整一下就可以了.

  6. feign无法注入service

    https://segmentfault.com/q/1010000008531927

  7. 114. Flatten Binary Tree to Linked List(M)

    . Flatten Binary Tree to Linked List Given a binary tree, flatten it to a linked list in-place. For ...

  8. 二进制部署 Kubernetes 集群

    二进制部署 Kubernetes 集群   提供的几种Kubernetes部署方式 minikube Minikube是一个工具,可以在本地快速运行一个单点的Kubernetes,尝试Kubernet ...

  9. python自动化开发-[第六天]-常用模块、面向对象

    今日概要: 1.常用模块 - os模块 - random模块 - shutil模块 - hashlib模块 - pickle/json模块 - shelve模块 - configparser模块 - ...

  10. HDFS集群优化篇

    HDFS集群优化篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.操作系统级别优化 1>.优化文件系统(推荐使用EXT4和XFS文件系统,相比较而言,更推荐后者,因为XF ...