概述:用倍增法求区间最值的离线算法,O(nlogn)预处理,O(1)访问。

预处理:

  状态:st[i][j]:[i,i+2^j)之间的最值  

  状态转移:如果j等于0,st[i][j]=a[i]

       如果j大于0,st[i][j]=max(st[i][j-1],st[i+2^(j-1)][j-1])或st[i][j]=min(st[i][j-1],st[i+2^(j-1)][j-1])

访问:

  求[l,r]区间里的最值

  k=floor(log(r-l+1))

  ans=max(st[l][k],st[r-2^k+1][k])或ans=min(st[l][k],st[r-2^k+1][k])

模板:

int st[N][],a[N];
void init_st(int n){
for(int i=n;i>=;i--){
st[i][]=a[i];
for(int j=1;i+(<<j-)-<=n;j++){
st[i][j]=min(st[i][j-],st[i+(<<j-)][j-]);
}
}
}
int query(int l,int r){
int k=floor(log(r-l+)/log());
return min(st[l][k],st[r-(<<k)+][k]);
}

例题:POJ - 3264

思路:求区间最值差

代码:

#include<iostream>
#include<cstdio>
#include<string>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a)) const int N=1e5+;
int ss[N][],st[N][],a[N];
void init_st(int n){
for(int i=n;i>=;i--){
st[i][]=a[i];
ss[i][]=a[i];
for(int j=;i+(<<j-)-<=n;j++){
st[i][j]=min(st[i][j-],st[i+(<<j-)][j-]);
ss[i][j]=max(ss[i][j-],ss[i+(<<j-)][j-]);
}
}
}
int query(int l,int r){
int k=floor(log(r-l+)/log());
return max(ss[l][k],ss[r-(<<k)+][k])-min(st[l][k],st[r-(<<k)+][k]);
}
int main(){
ios::sync_with_stdio(false);
cin.tie();
int n,q,l,r;
cin>>n>>q;
for(int i=;i<=n;i++)cin>>a[i];
init_st(n);
while(q--){
cin>>l>>r;
cout<<query(l,r)<<endl;
}
return ;
}

参考:https://www.cnblogs.com/AireenYe/p/6270518.html

算法笔记--st表的更多相关文章

  1. [算法模板]ST表

    [算法模板]ST表 ST表和线段树一样,都能解决RMQ问题(范围最值查询-Range Minimum Query). 我们开一个数组数组\(f[maxn][maxn\log_2]\)来储存数据. 定义 ...

  2. 算法学习 - ST表 - 稀疏表 - 解决RMQ问题

    2017-08-26 21:44:45 writer:pprp RMQ问题就是区间最大最小值查询问题: 这个SparseTable算法构造一个表,F[i][j] 表示 区间[i, i + 2 ^ j ...

  3. 【JZOJ5064】【GDOI2017第二轮模拟day2】友好城市 Kosarajo算法+bitset+ST表+分块

    题面 在Byteland 一共有n 座城市,编号依次为1 到n,这些城市之间通过m 条单向公路连接. 对于两座不同的城市a 和b,如果a 能通过这些单向道路直接或间接到达b,且b 也能如此到达a,那么 ...

  4. 【算法】ST表

    想学习一下LCA倍增,先 水一个黄题 学一下ST表 ST表 介绍: 这是一个运用倍增思想,通过动态规划来计算区间最值的算法 算法步骤: 求出区间最值 回答询问 求出区间最值: 用f[i][j]来存储从 ...

  5. [数据结构与算法-13]ST表

    ST表 主要用来快速查询静态数据区间最大值 思路 数组\(A[i][j]\)存储数列\(\{a_i\}\)中区间\(i \in [i, i+2^j)\)的最大值 查询时只需要查询\(max\{A[i] ...

  6. [学习笔记]ST表

    ST表 给定一个数列$a,O(nlogn)$预处理,$O(1)$查询数列在区间$[l,r]$的最值. 本文介绍求最大值. 实现 预处理 $st[i][j]$表示$max\{a_k\}(k\in[i,i ...

  7. 算法学习——st表

    st表是一种基于倍增思想的DP. 用于求一个数列中的某个区间的最大/最小值. 用st[i][j]表示从第i个开始往后2^j个点,最大的是多少. 我们令k[i]表示2^i等于多少 那么有转移方程 st[ ...

  8. [poj3264]rmq算法学习(ST表)

    解题关键:rmq模板题,可以用st表,亦可用线段树等数据结构 log10和log2都可,这里用到了对数的换底公式 类似于区间dp,用到了倍增的思想 $F[i][j] = \min (F[i][j - ...

  9. RMQ算法使用ST表实现

    RMQ RMQ (Range Minimum Query),指求区间最小值.普通的求区间最小值的方法是暴力. 对于一个数列: \[ A_1,~ A_2,~ A_3,~ \cdots,~ A_n \] ...

随机推荐

  1. OpenStack trove原理及配置实践

    DBaaS是什么? 字面上理解数据库即是服务,简单来说就是以服务的形式为用户提供数据库服务. 在云平台上使用trove有什么优势? 简化IT操作流程,降低使用数据库使用门槛举个例子,曾经我搭建一个LA ...

  2. Linux 使用系统ISO制作yum源

    关于linux安装问题,大多数情况下 系统开发完成之后,需要部署到生产机器上,客户提供的机器预装好了操作系统,但是都是内网环境 与外网都是物理隔绝的,那么 在搭建生产环境时需要安装相关软件时,如果自己 ...

  3. python getctime() 文件最后一次的改变时间

    Return the metadata change time of a file,reported by os.stat() def mm(): file_name=r'c:\temp.txt' f ...

  4. kafka监控工具

    Kafka Web Conslole Kafka Manager KafkaOffsetMonitor.

  5. Js基础知识3-字符串、正则表达式全解

    字符串的生成转换 你可以将任何类型的数据都转换为字符串,你可以用下面三种方法的任何一种: var myStr = num.toString(); // "19" var myStr ...

  6. web前端----jQuery操作标签

    样式操作 样式类 addClass();// 添加指定的CSS类名. removeClass();// 移除指定的CSS类名. hasClass();// 判断样式存不存在 toggleClass() ...

  7. Java微服务框架一览

    引言:本文首先简单介绍了微服务的概念以及使用微服务所能带来的优势,然后结合实例介绍了几个常见的Java微服务框架. 微服务在开发领域的应用越来越广泛,因为开发人员致力于创建更大.更复杂的应用程序,而这 ...

  8. Linux系统的vi命令

    Linux系统的vi命令 vi编辑命令 1,格式: #vi filename 2,用法: //打开或新建文件,并将光标置于第一行首 #vi + filename //打开文件,并将光标置于第n行首 # ...

  9. 20145322 Exp5 MS08_067漏洞测试

    20145322何志威 Exp5 MS08_067漏洞测试 实验过程 kali ip:172.20.10.4 windows 2003 ip:172.20.10.2 在控制台内使用search ms0 ...

  10. 20145221高其_PC平台逆向破解_advanced

    20145221高其_PC平台逆向破解_advanced 实践目录 shellcode注入 Return-to-libc 攻击实验 shellcode注入 概述 Shellcode实际是一段代码(也可 ...